Survey of high contrast imaging instrument concepts

D. Mawet, ESO SPHERE Paranal instrument scientist

Sagan Summer workshop, 2014-07-21

Acknowledgements: B. Oppenheimer, P. Hinz, D. Defrere, A. Skemer, L. Close, B. Macintosh, O. Guyon, N. Jovanovic, G. Vasisht, J.-L. Beuzit, J. Kasdin, T. Fusco, J.-F. Sauvage, and many others.

Content

- High contrast imaging is the richest technique for exoplanet science
- The mother of high contrast imagers: HST
- Basics of high contrast imagers:
 - Building blocks
 - The order matters
- Highlights of 1st generation high contrast AO imagers
- 2nd generation high contrast XAO imagers are here!
- The future:
 - On the ground: ELTs
 - In space: JWST, AFTA-WFIRST & EXO-C/S

High contrast imaging is the richest technique

Marois et al. 2010

Lagrange et al. 2010

High contrast imaging is the richest technique

... and the most difficult one (contrast, IWA)

1st generation medium-high contrast imagers

· · · · ·	<u> </u>				
Instrument	Telescope	AO	Wavelength	Ang. res.	Coronagraph
			(μm)	(mas)	
WFPC2†	HST	NA	0.12 - 1.1	10-100	
WFPC3	HST	NA	0.2 - 1.7	17 - 150	
NICMOS†	HST	NA	0.8 - 2.4	60-200	Lyot
ACS†	HST	NA	0.2 - 1.1	20-100	Lyot
STIS	HST	NA	0.2 - 0.8	20-60	Lyot
NAOS-CONICA	VLT	16-SH	1.1 - 3.5	30-90	Lyot/FQPM/APP/VC
VISIR	VLT	no	8.5 - 20	200 - 500	FQPM/VC
COME-ON+-ADONIS†	3.6-m ESO	8-SH	1 - 5	60 - 280	Lyot
PUEO-TRIDENT [†]	CFHT	8-SH	0.7 - 2.5	4-140	Lyot(/CIA)
COMICS	Subaru	NA	8 - 25	200 - 500	
HICIAO	Subaru	14-C	1.1 - 2.5	30-70	Lyot
CanariCam	GTC	NA	7.5 - 25	150 - 470	
KeckAO-NIRC2/OSIRIS	Keck	16-SH	0.9 - 5.0	20 - 100	Lyot(/VC, 2015)
LWS^{\dagger}	Keck	no	3.5 - 25	70 - 500	
MIRLIN†	Keck	no	8.0 - 20	160 - 400	
ALTAIR-NIRI	Gemini N.	no	1.1 - 2.5	30 - 70	Lyot
NICI†	Gemini S.	9-C	1.1 - 2.5	30-70	Lyot
$T-ReCS^{\dagger}$	Gemini S.	no	1.1 - 2.5	30 - 70	
Clio/PISCES	MMT	16-SH	1 - 5	30 - 70	APP
Lyot project [†]	AEOS	30-SH	0.8 - 2.5	60 - 140	Lyot/FQPM
PALAO(WCS)†-PHARO	Hale 200"	16-SH	1.1 - 2.5	60–140	Lyot/FQPM/VC
AO-IRCAL	Shane 120"	8-SH	1.1 - 2.5	100 - 150	

The mother of all high contrast imagers

High contrast imaging in space enabled by stability

HST only had classical Lyot unoptimized coronagraphs, but its unmatched stability benefited, and still benefits all of its imagers: WFC2/3 (nc), STIS (bars), NICMOS (hole), ACS (proper masks)

...so much so that archival data mining is producing wealth of results

Its secret: 3 fine guidance sensors (FGS)

Laurent's talk Elodie's POP/POSTER

ALICE: an overwhelming harvest

Soummer, Pueyo, Perrin, Choquet, et al

Schneider et al. 1999

HR 4796, F160W

Augereau et al. 1999

Pinte et al. 2008

Lessons learned applied to new programs

Schneider et al. 2014 (STIS)

Not a level-playing field!

High contrast imaging through this requires some well thought out architecture!

Building blocks of direct imaging instruments

Architecture: order matters

- All high contrast imagers are based on a variant of the following
- · Devil is the details of their respective implementation

VLT: NAOS-CONICA

10 years of AO at the VLT

Subaru: AO188 - HICIAO

Keck: AO-NIRC2

Transitioning to a new regime

Gemini: NICI

Palomar WCS

Serabyn et al. 2007

Result: >90% Strehl Ratio (how close the PSF is to the theoretical one for the perfect system)

whole held-of-view provided by CONICA L27's objective,

misphere and has a constraining outer working angle of a targets, the IAGM wipprovide background timited ediction

D.5"-1" (depending on the target magnitude). The AGPM d pupil total kiggende interproduction of the second imaging

ched L-band AGPMs in terms of peak mult depth, as a function of lepth below 10⁻² acros Morely etand 209 by ht. Estimated sensibility of the n with a simple PSF subtraction (Kasper et al. 2007) and with the APP s been fixed on NACO, the AGPM outperforms the APP in all aspects. • IECHNICAL ADVANTAGE:

ew NACO/AGPMtappateousing antiadified everision Strend day, December 11, 2012 w that in the case of complete and Midwarfs belonging to for loss in resolution and 200 Myr and at a distance d < 50 pc, the detection level ERE search space (Figure 7). For older stars and higher

T. Meshkat, J. Rameau POP/POSTER

Mid-IR vortex at Par

Mawet et al. 2005, 2013, Delacroix et al. 2013, Absil et al. 2

8 years of R&D

C. Delacroix

POP/POSTER

@ Paranal observatory

L-M band high contrast imaging: 1st generation's continuous hegemony

J. Milli

POP/POSTER

Beth and Travis talks

Science highlights from 1st generation

Beth and Travis talks

Science highlights from 1st generation

Keck-NIRC2: brown dwarf companion (Crepp et al. 2014)

NICI: HR4796 debris disk (Wahhaj et al. 2014) 2nd generation high contrast imaging instruments

2nd generation = 1st generation on steroids

- Extreme AO, **C** = (1-S) / N² (Serabyn et al. 2007):
 - High density DM
 - High density, low noise, faster WFS
- Better optics => excellent wavefront quality
- Optimized for stability => slow thermal & mechanical drifts
- Speckle control strategies are fully built in!

Instrument	Telescope	AO	Wavelength	Ang. res.	Coronagraph
			(μm)	(mas)	
P3K-P1640/SDC	Hale 200"	64-SH	1.1 - 2.4	45-90	APLC/VC
SPHERE	VLT	40-SH	0.5 - 2.4	15 - 55	Lyot/APLC/FQPM
GPI	Gemini South	48-SH	0.9 - 2.4	23-55	APLC
SCExAO	Subaru	14-C & 48-P	0.55 - 2.4	15 - 55	PIAA/SP/VC
MagAO-Clio2/VisAO	Magellan	25-Pyramid	0.55 - 5	18-160	Lyot(+APP)
LMIRCAM	LBT'	30-Pyramid	2-5	60 - 120	APP+VC

2nd generation: deal with speckle headaches

Red pill: image plane wavefront sensing Blue pill: differential imaging

I'll have both!

Similar architecture + a few (critical) tweaks

SAME ARCHITECTURE FOR NEXTGEN SPACE-BASED CORONAGRAPHS!

Configuration - environment - telescope interaction

	Telescope	Location	Focus	Note
P3K	Hale 200-inch	CA	Cassegrain	Equatorial mount
LBT	LBT	AZ	Combined	ASM
MagAO	Magellan	Chile	Nasmyth	ASM, Rotating
SCExAO	Subaru	Hawaii	Nasmyth	Modular
GPI	Gemini S	Chile	Cassegrain	Small, light weight
SPHERE	VLT	Chile	Nasmyth	Heavy, stable (damped)

Wild weather conditions! J. O'Neal, ESO

SPHERE vs. Paranal Ambient Conditions

+ monsoon, wildfires (+ strikes, bbq)

Coronagraphs are allergic to dust...

Earthquakes!

Wind shake - Vibrations - M2 control Sauvage & Fusco et al.

Palm-3000 Dekany et al.

Project 1640 Oppenheimer et al.

LBT and Mag AO ASM

Excellent for mid-IR imaging (minimize # of optical surfaces)

Gemini planet imager Macintosh et al.

Wavefront sensing

	Shack- Hartmann	Spatial filter	Pyramid	Modulation	Curvature
P3K	Х	Х			
LBT			Х	X	
MagAO			Х	Х	
SCExAO			X		AO188
GPI	X	X			
SPHERE	X	X(*)			

Shack-Hartmann vs Pyramid WFS

Ragazzoni & Farinato 1999

Spatial filtering for SH WFS Poyneer & Macintosh 2006

Figure 17 Evolution of the coronagraphic images as a function of the spatial filter size. Up : images, Down :

Spatial filtering is critical for high contrast

Fusco et al. 2014

Η

J

Y

Low-noise cameras

- EMCCD allows for very low readout noise
- Super-sensitive WFS

DM technology

	LODM	HODM	ASM
P3K	PMN, Xinetics (241)	PMN, Xinetics (3k)	
LBT			Voice coil (672)
MagAO			Voice coil (585)
SCExAO	Bimorph (188)	MEMS, BMC (2k)	
GPI	PZT, CILAS (97)	MEMS, BMC (2k)	
SPHERE		PZT, CILAS (1.6k)	

Stacked array electrostrictive effect (PMN, PZT)

Bimorph lateral electrostrictive

Madec et al. 2012

Dead actuators are contrast killers

Coronagraph choices

Coron Agraphs

2nd order coronagraphs (very small IWA): VC2 / 4QPM / PIAA

4th order coronagraphs: BL4 / VC4 / PIAA*

APLC

SP and APP insensitive to tip-tilt

Spec: 10⁻² λ Goal: 10⁻³ λ

Low Order Wavefront Sensor (LOWFS)

- P3K: CAL (P1640) + pseudo-SCC (SDC) -3
- GPI: CAL 2'-3
- SCExAO: CLOWFS, LSLOWFS -2' and 3
- SPHERE: DTTS, PTTS -1
- LBT/MAgAO: NA

SPHERE DTTS Baudoz et al.

P1640 CAL system

Vasisht et al.

P1640 CAL system in action Vasisht et al.

P-mode sequence

P1640 CAL system doing E-field correction Vasisht et al.

GPI CAL system Wallace et al.

SCExAO LOWFS, option I Guyon et al. 2009

SCExAO LOWFS, option II

Singh et al. 2014

Differential imaging techniques and corresponding data reduction methods

See Laurent's talk "Overview of Data Reduction Methods" + Tuesday hands-on session

	RDI	ADI	SDI-IFS	SDI-DBI	PDI	CDI
P1640	Х		Х			Х
LBT	Х	Х				
MagAO	Х	Х		Х		
SCExAO	Х	Х	X(*)			Х
GPI	Х	Х	Х		Х	
SPHERE	Х	Х	Х	Х	Х	

Performance and early science results

10 years of progress pioneered at Palomar

PALAO

P3K

See Aaron Veicht, Ricky Nilsson,Jonathan Aguilar POP/POSTER

P3K-P1640, the first XAO - IFS on sky Oppenheimer et al.

No Post Processing

After S4 Speckle suppression

LBT: L' high contrast imaging at its best Skemer et al. 2012, 2014

L'-band vortex at LBT Defrere et al. 2014

Mag AO: visible AO!

Claus, Males, Morzinski et al.

Mag AO: H α SDI

ADI reduced Continuum (643 nm) image. Detect weak point source 9.65 mag fainter at 83 mas PA=130.

83 mas

The Green circle is the location of a faint source found by NIR

Close et al. 2014

ADI reduced Halpha filter (656.3 nm). Detected H alpha point source 295% Continuum.

ASDI reduction: (Continuum PSF subtracted from each Halpha image) then SDI frames ADI processed. HD142527B remains the same.

GP Macintosh et la. 2014; Chilcote et al. 2014

GPI early exoplanet science Perrin et al. 2014

One individual 60 s exposure

Combined total intensity

Polarized intensity

SPHERE first light!

Commissioning on-going

SPHERE early contrast performance

- Com1, improved since!
- M2 control issue solved => 92% Strehl at H
- tip-tilt rms within specs (3 mas)

Summary

	Telescope/ Platform	WFS	DM	Coronagraph	LOWFS	DI
P3K/P1640/ SDC/PHARO	Cassegrain / Palomar 200 inch Hale telescope	SH	LODM/HODM (Xinetics)	APLC/RAVC/ VC	CAL + SH	SDI/RDI
LBT(I)	Combined focus / LBT	Pyramid	ASM	APP/VC (LMIRCAM)	N/A	ADI/RDI
MagAO	Nasmyth / Magellan	Pyramid	ASM	APP (Clio2)	N/A	ADI/RDI/SDI
SCExAO	Nasmyth / Subaru	Curvature (AO188) / Pyramid	LODM/HODM (CILAS(*)/BMC)	PIAA/VC	CLOWFS/ LSLOWFS	ADI/SDI/RDI
GPI	Cassegrain / Gemini South	SFSH	LODM/HODM (CILAS/BMC)	APLC	CAL + SH	ADI/SDI/PDI
SPHERE	Nasmyth / VLT	SFSH (EMCCD)	HODM (CILAS)	APLC/4QPM/ CLC	DTTS	ADI/SDI/PDI

Future of high contrast imaging from the ground and from space

Huge parameter space to explore, a single machine cannot do it all!

2020-2030 horizon

Challenge: diffraction and wavefront control over large, segmented and/or heavily obscured apertures

In space: JWST

Mode	Instrument	Wavelength (microns)	Pixel Scale (arcsec)	Field of View
	NIRCam	0.6 – 2.3	0.032	20 x 20″
	NIRCam	2.4 - 5.0	0.065	20 x 20″
Coronography	MIRI	10.65	0.11	24 x 24″
Coronography	MIRI	11.4	0.11	24 x 24″
	MIRI	15.5	0.11	24 x 24″
	MIRI	23	0.11	30 x 30″

WFIRST - AFTA

Challenges: pupil geometry, pupil geometry, pupil geometry!+ optical aberrations, polarization, telescope time/availability

some say it could be our only/best shot at a space-based coronagraph for the foreseeable future

EXO-C: backup to WFIRST-AFTA

Challenges: 1.4-m aperture, budget

EXO-Starshade

Zooming in: synergy and complementarity!

Spergel et al 2013, WFIRST-AFTA

High contrast imaging with ELTs: still a lot to be done, invented, combined, optimized

- E-ELT: building on EPICS studies, Planetary Camera and Spectrograph (PCS) R&D roadmap written by ESO and made public to European Instituted
- TMT: Planet Finder Instrument (PFI) study from 2006 concluded VNC is the optimal way to deal with segments, not true anymore
- GMT: build on LBT experience, PIAA

Synergistic developments

That's all folks! Have fun out there!

SPHERE commissioning pics (J. Girard)