Aki Roberge NASA Goddard Space Flight Center THE THEORY AND DEVELOPMENT OF STARSHADES

Starshade strengths

- Contrast and inner working angle decoupled from telescope aperture size
 - IWA not proportional to λ / D anymore
- Broad bandpass, high total throughput
- No constraints on other astronomical instruments

NASA / Swift

Starshade strengths

- No outer working angle
- 360 degree suppressed field of view

W. Cash (Colorado)

- High quality telescope not required
 - Segments & obstructions not a problem
 - Wavefront correction unnecessary

NASA / STScl

Starshade drawbacks

- Full-scale end-to-end system test on the ground not possible
 - Sub-scale lab and field tests possible (more later)

T. Glassman / NGAS

1 week

40.000 km

- Long times between observations
 - Need to slew the starshade between targets
- Limited number of starshade movements

Basics: shadow the telescope

Starshade positioned to block the starlight

Must be larger than the telescope to keep the starlight out
Credit: S. Shaklan

Inner working angle

Geometrical Shadow

IWA ~ angle to edge of starshade $\theta \sim R / z$

Inner working angle

Earth at 10 pc: IWA = 100 mas For D = 4 m, 2 × R = 6 m z ~ 6200 km

Not so simple: diffraction

Diffraction Shadow

Circular disk makes diffraction pattern with Arago spot.

Shadow isn't dark enough.

Petals for high contrast

Diffraction Shadow

Approximate smooth radial apodization using petals.

Now can get better than 10⁻¹⁰ contrast with reasonably sized starshade.

Calculating a starshade shape

Fresnel (near-field) diffraction with apodization function A(r)

$$E(\rho) = E_0 e^{\frac{2\pi i z}{\lambda}} \left(1 - \frac{2\pi}{i\lambda z} e^{\frac{i\pi}{\lambda z}\rho^2} \int_0^R A(r) e^{\frac{i\pi}{\lambda z}r^2} J_0\left(\frac{2\pi r\rho}{\lambda z}\right) r dr \right)$$

z = separation between starshade and telescope

R = radius of starshade

 ρ = radial position measured from center of shadow at telescope entrance

- r = radial position measured from center of shadow at the starshade
- 1. Exact solution for A(r) with $\rho = 0$: Hypergaussian (Cash 2006)
- 2. Numerically calculate optimal A(r) (Vanderbei, Cady, & Kasdin 2007)

Wavelength dependence

Fixed separation θ Ζ **Smaller shadow, lowered contrast** θ Ζ Larger shadow, deeper contrast

Scaling a hypergaussian starshade

- Fresnel #:
 F = R² / (λ z)
- For a given λ , IWA: R = F × λ / IWA z = F × λ / IWA²
- For a given R, IWA: $F = R \times IWA / \lambda$

Credit: C. Noecker

Small starshade

- D = 1.5 m, R = 5 m, ρ_{max} = 1.75 m, ρ'_{max} = 0.35
- Want contrast = 10^{-10} or better : blue region

Larger starshade

• D = 1.5 m, R = 15 m, ρ_{max} = 1.75 m, ρ'_{max} = 0.12

• Want contrast = 10^{-10} or better : blue region

Optimal starshade differences

 Numerically calculated optimal starshade is smaller for same contrast

 But it has a shortwavelength cutoff

Log (transmission) at telescope

Credit: C. Noecker

Starshade behavior summary

- Redder bandpass needs larger starshade
- Larger starshade has to be further away to get same IWA
- If starshade is further away, longer slew times for retargeting
- Hypergaussian starshade size set to achieve desired contrast at longest wavelength of interest
- Numerically calculated optimal starshade is smaller for same contrast but has a short wavelength cutoff

Technical challenges

- Precise edge profile
 (~ 50 µm tolerance) required
 over large structure
- Knife-edge to prevent sunlight scattering into telescope

NASA / JPL / Princeton

- On-orbit deployment of large structure
- Precise alignment between starshade and telescope needed (± 1 meter tolerance). Soft requirement

Precision petal manufacturing

Full-scale petal with edge profile for contrast < 10⁻¹⁰

Credit: D. Lisman

Development of knife-edge to control edge scatter underway

Deployment demonstration

Contrast demonstrations

Optical models with distortions monochromatic: 10⁻¹²

0.1% scale lab testing monochromatic: 10⁻¹⁰

~ 1% scale field testing 50% bandpass: 10⁻⁸

More info

Cash, W. (2006). "Detection of Earth-like planets around nearby stars using a petal-shaped occulter." Nature, 442, 51

Vanderbei, R., Cady, E., & Kasdin, N. J. (2007). "Optimal Occulter Design for Finding Extrasolar Planets." ApJ, 665, 794

Shaklan, S., et al. (2010). "Error budgeting and tolerancing of starshades for exoplanet detection", SPIE, 77312G http://proceedings.spiedigitallibrary.org/proceeding.aspx? articleid=749972

Kasdin, N. J., et al. (2013). "Recent progress on external occulter technology for imaging exosolar planets." <u>http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=64971</u>