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Outline

® Super-Earths —Their Formation and Their Interiors

® Super-Earths — Their Atmospheres (VWhat have we
seen so far?)

® |essons learned for direct imaging



Improved observational equipment and techniques over
the recent years have revealed a large population of
low-mass exoplanets
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First 100 exoplanets!
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Improved observational equipment and techniques over
the recent years have revealed a large population of
low-mass exoplanets
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Super-Earths — Bridging the Gap

Super-Earths are a fundamentally new class of planets,
not present in our solar system




A more typical solar system, perhaps?
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Image credit: NASA Ames/JPL-Caltech



“The most common class of planetary system detectable today
consists of one or more planets approximately one to three
times Earth's size orbiting within a fraction of the Earth-Sun

distance.” - Andrew Howard (science, 2013)
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Howard, Science, 2013




The many names of super-Earth:

Astronomers Find a New Type of Planet: The "Mega-Earth"

N o 14 Earth-mass planet resembles
a mini-Neptune

For Release: Monday, June 2, 2014 - 11:40am

Cambridge, MA - Astronomers announced today that they have discovered a new type of planet - a rocky world

weighing 17 times as much as Earth. Theorists believed such a world couldn form because amything so hefty would
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ABSTRACT

We report on the discovery of stellar occultations, observed with Kepler, which recur periodically at 15.685 hr
intervals, but which vary in depth from a maximum of 1.3% to a minimum that can be less than 0.2%. The star that
is apparently being occulted is KIC 12557548, a V= 16 mag K dwarf with T ;. = 4400 K. The out-of-occultation
alals a als S 1 "'."“ [ = I ’.' Il ! i i ' .."' l| . alela N "'.-"""- LANN 1 1




Super-Earths have diverse bulk properties.
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Howard et al., Nature, 2013




Transits are useful! Planet radius
is a strong indicator of bulk
composition.

Pure Water
Pure Rock

Posterior Probability

Lopez & Fortney, 2013 arXiv 1311.0329
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Rogers, 2014 arXiv 1407.4457




N-body simulations show possible formation
pathways for water-rich super-Earths
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Final Composition - HD17051 (0.5 Myr)

Planetary composition depends
on stellar host abundances

Low C/O
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Secondary Atmospheres — Imagine the Possibilities...

PLANET FORMATION|  |EQUILIBRIUM CHEMISTRY

OUTGASSING OFVOLATILES, [PHOTOCHEMISTRY

PLANET LOCATION

MASS LOSS
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G| 1214b was the first transiting super-Earth for which
atmospheric observations were possible

G| 1214 system
to scale
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Lissauer et al., Nature, 201 | (modified c/o E. Lopez)



The low bulk density of G] 1214b informs us of its
possible atmospheric composition

|. “Mini-Neptune” Scenario:

Rock / ice interior + hydrogen-dominated atmosphere
- (mostly H,+ trace H,O, CH,, etc.)

2. Water World Scenario:

Mostly H,O - ice interior + steam atmosphere

(Rogers & Seager, Ap/, 2010 + Nettelmann et al. 201 I)



No atmosphere

Solar

30 x Solar
50 x Solar
H,O

H,O - CO,
CO,

Transit Depth (%)

Wavelength (microns)
Miller-Ricci (Kempton) & Fortney, ApJL 2010

Signatures of 0.1 - 0.3%

for H-rich atmospheres!
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...but a flat spectrum does not necessarily imply
a high mean molecular weight atmosphere

Wavelength (um)

Berta, Charbonneau, Désert, Kempton et al., ApJ 2012
- Solar Composition 100% H.O

@ VLT (Bean et al.2011) VLT (Bean et al.2010) @ WFC3 (Berta etal.) @ CFHT (Croll et al.2011)
Magellan (Bean et al.2011) @ Spitzer (Désert et al. 2011) ---- Keck (Crossfield et al. 201 1)

* H-rich composition ruled out at 8.2-0 confidence

* 10% water by volume (50% by mass) required to be within |G (M =
3.6)

o Alternative is high-altitude clouds or hazes



|5 transits of WFC3 observations with HST reveal that clouds
or hazes are the only explanation consistent with the data. The
clouds must become optically thick at pressures < 0.1 mbar
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A second benchmark super-Earth HD 97658b
also appears to have a flat transmission spectrum

M, =79Mg
R, =23R,
e p=34g/cm’
e P =9.49 days
T~ 700K
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Knutson et al., ApJ, submitted



The prevalence of clouds might seem unsurprising,
but what are these clouds made of!
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Hazes (perhaps those made of complex hydrocarbons)
may be responsible for the flat transmission spectra

‘Major’ Species|  Depletion of methane + Carbon-Bearing Species
ammonia via photodissociation
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A reminder: Transmission spectra are not emission spectra

Planet core
Atmosphere

Transit Depth
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\/ v -— A longer light path
\/ through the atmosphere
means a larger impact of
Wavelength clouds on transmission

spectra. Also, terminator
vs. dayside geometry

could matter.
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The challenges to direct imaging of super-Earths
include very small planet / star contrast
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The curious case of 2M1217B might be explained as a terrestrial
planet that recently experienced a large collision during its
formation process

Accepted to ApJ Letters, 4 September 2007

A Hot Protoplanet Collision Afterglow

Eric E. Mamajek

.".“']
Michael R. .‘\]f'_‘»'-".'

ward Observatory, The University of Arizona, Tucson




Some simple math for why you might want to
look for protoplanet collision afterglows

Surface temperature:
1,500-4,000 K
Cooling time in free space:

~10% of young stars with
el a hot super-Earth
afterglow at a given time

~100,000 yrs
Cooling time with a thick atmosphere:
~|-10 Myr




High contrasts are

possible for
protoplanet collision o SoorComposiion - ___Venus Compositon
afterglows, but the o AN f\\ = 1 BN 7
details depend
strongly on
properties of the
atmosphere.
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Improved modeling and opacity data show direct
detection will be somewhat more challenging and
will require 30-m class telescopes to achieve.
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Outline (in Reverse)

® | essons learned for direct imaging

® Super-Earths — Their Atmospheres (VWhat have we
seen so far?)

® Super-Earths —Their Formation and Their Interiors



Summary / Conclusions

Super-Earths are planets that are have size and mass intermediate to
Earth and Neptune

There are no super-Earths in our solar system, but there appear to be
many around nearby stars

Super Earths are a highly diverse population of planets

Interior models experience significant degeneracies, therefore
observations of the planets’ atmospheres are the best way to
differentiate between different bulk compositions

Direct imaging of super-Earths is extremely challenging because they are
small and cool (do not retain heat from formation processes for more
than 100 Myr typically)

Best current prospects for imaging super-Earths comes during the
process of collisional formation

Future instrumentation (you guys!) will ultimately allow us to image
terrestrial exoplanets






