POP: Inside the gap with NRM

Alexandra Greenbaum Johns Hopkins University

KRAUS & IRELAND 2012

Inside the gap with NRM

NRM – **Non-Redundant mask interferometry** Splits up the pupil into a set of unique baselines to measure interference fringes

- 0.5 λ /D resolution (~ 30 mas in GPI H band)
- Interferometric technique, pushes a more aggressive inner working angle

GPI 10-hole mask

- Probes contrasts down to 10² 10³
 @ 5-15 AU scales
- Excellent tool for studying planet formation

Blended Source Confidence: a framework to compare high-spatial resolution techniques

High-resolution image of KOI-1546 obtained with AstraLux at Calar Alto Observatory (Almería, Spain).

Sensitivity curves for the candidate planetary system KOI-0082 obtained with different techniques.

High-resolution follow-up observations of planet candidates are crucial in the confirmation process. An exhaustive analysis of these images is necessary to quantify how they improve the quality of the candidate. The **Blended Source Confidence (BSC) parameter** provides this **quantification** and allows **comparison** between different techniques.

Jorge Lillo-Box (Astrobiology Center, INTA-CSIC, Spain)

Blended Source Confidence: a framework to compare high-spatial resolution techniques

The BSC is an easily computable parameter given the sensitivity curve of a highresolution image so that different methods can be compared. In Lillo-Box et al. (2014), we have obtained it for the 301 *Kepler* candidates observed with lucky imaging, improving the probability of being isolated in more than 50% for the 62% of the studied candidates. Comparison to other works show that our optical high-resolution survey combines a large number of observed sources with a high quality of the observations, reflected in the low BSC obtained for most of them.

Sagan Summer Workshop 2014

Jorge Lillo-Box (Astrobiology Center, INTA-CSIC, Spain)

Dark Speckle Statistics

The DS Method Requires a Photon Counting Detector

DARKNESS: A MKID based IFS for high-contrast imaging at Palomar

MICROWAVE KINETIC INDUCTANCE DETECTORS

• Operating principle¹: photons break Cooper pairs in lithographed superconducting resonator. Broken Cooper pairs -> Inductance shift -> Resonance shift -> Phase shift in readout tone

- Measures individual photon arrival times to few μs and photon energy to ~10%
- Optimized for 0.7-1.4 μm photons for DARKNESS

MECHANICAL DESIGN

• LN2/LHe pre-cooled Adiabatic Demagnetization Refrigerator: **Operating temperature = 100 mK**

• Dewar fits PHARO envelope for easy integration with Palm-3000 AO system, Project 1640 coronagraph, and Stellar Double Coronagraph (SDC)

Seth Meeker, UCSB

DARKNESS POP, Sagan Workshop 2014

DARKNESS: A MKID based IFS for high-contrast imaging at Palomar

SIMULATED PERFORMANCE

Project 1640 simulated with PROPER
Includes residual WFE from P3K AO and P1640 optical aberrations

• Energy Resolution -> post processing with Spectral Differential Imaging (SDI)

 Photon Counting -> post processing with Dark Speckle Imaging (DS)

Seth Meeker, UCSB DARKNESS POP, Sagan Workshop 2014

STORY OF A NEW METHOD ...

CONTEXT

- PhD
- From September 2009 to December 2012
- Two laboratories ONERA & IPAG

IPAG

Institut de Planétologie

et d'Astrophysique de Grenoble

PEOPLE

• Spectral « deconvolution » [Sparks and Ford, 2002]

A NEW METHOD IS BORN

- Evolutive method:
 - Diverse type of instruments
 - Diverse type of objects (planets, disks, brown dwarfs ...)
 - Detection and characterization
 - Combination of spectral and temporal information possible
- All-in-one method:
 - Joint estimation of aberrations and object of interest: paves the way for calibration by post-processing
- Joint design

THE STORY CONTINUES ...

RESULTS

(a) Simulation.

(b) Joint estimation.

NEW HORIZONS

- Post-doc Marie Ygouf
 - From September 2014
 - STScl
 - AFTA project
- Second PhD Faustine Cantalloube
 - From September 2013
 - Two laboratories ONERA & IPAG
 - See Faustine's POP & Poster

FOR MORE INFORMATION ABOUT..

- The model used
- The criterion we minimize
- Strategies of minimization
- Perspectives
- References

SEE MY POSTER!

A retrieval approach to modeling giant planet spectra

Statia H. Luszcz-Cook¹, M. Ádámkovics², K. de Kleer²

Forward model: a flexible, python-based radiative transfer code **Retrieval**: *emcee.py* — an affine invariant MCMC ensemble sampler by Dan Foreman-Mackey (NYU) ¹AMNH ²UC Berkeley

contact me: <u>shcook@amnh.org</u>

Example retrieval:

Advantages:

- Ability to explore a broad parameter space (e.g. of cloud properties, carbon/oxygen ratio, ...)
- Flexibility

Current work: extension to exoplanets

- Greater range of temperatures, pressures, compositions
- Fewer constraints; fewer data points

contact me: shcook@amnh.org

The World's First Diffraction-Limited Doppler Spectrometer

"Seeing" limited

Diffraction-Limited

All Previous Doppler Spectrometers

Revolutionizing the Doppler RV method using Extreme AO

Eric Bechter University of Notre Dame

2014 Sagan Exoplanet Summer Workshop

iLocater

7/10/14

2014 Sagan Exoplanet Summer Workshop

MID-INFRARED HIGH-CONTRAST IMAGING OF HD 114174 B: AN APPARENT AGE DISCREPANCY IN A "SIRIUS-LIKE" BINARY SYSTEM

Christopher T. Matthews, Justin R. Crepp, Andrew Skemer, Philip M. Hinz, Alexandros Gianninas, Mukremin Kilic, Michael Skrutskie, Vanessa P. Bailey, Denis Defrere, Jarron Leisenring, Simone Esposito, Alfio Puglisi

Object	Method	Age (Gyr)
HD 114174 A	Isochronology	$4.7^{+2.3}_{-2.6}$
HD 114174 A	Gyrochronology	$4.0_{-1.09}^{+0.96}$
HD 114174 B	Hydrogen model	7.77 ± 0.24
HD 114174 B	Helium model	6.17±0.03

Deepest mid-infrared high-contrast image to date (including extrasolar planets):

ΔL' = 10.15 ± 0.15 ρ = 0.68''

Matthews et al. 2014, ApJ Letters, 783, L2

A Diffraction Limited Doppler Spectrometer for the LBT

Andrew Bechter University of Notre Dame Sagan Workshop

HiCAT

High-contrast Imager for Complex Aperture Telescopes

N'Diaye et al. 2013, 2014

Russell B. Makidon Optics lab

HICAT team:

Mamadou N'Diaye Elodie Choquet Sylvain Egron Laurent Pueyo Lucie Leboulleux **Olivier** Levecq Marshall D. Perrin Erin Elliot J. Kent Wallace **Emmanuel Hugot** Michel Marcos Marc Ferrari Chris A. Long **Rachel Anderson** Audrey DiFelice **Rémi Soummer**

2014 Sagan Exoplanet Summer Workshop, Pasadena

Elodie Choquet (STScI)

High-contrast Imager for Complex Aperture Telescopes

Russell B. Makidon Optics lab

HICAT team:

Mamadou N'Diaye Elodie Choquet Sylvain Egron Laurent Pueyo Lucie Leboulleux **Olivier** Levecq Marshall D. Perrin Erin Elliot J. Kent Wallace **Emmanuel Hugot** Michel Marcos Marc Ferrari Chris A. Long **Rachel Anderson** Audrey DiFelice **Rémi Soummer**

ALICE Archival Legacy Investigations of Circumstellar Environments

Extrasolar Planetary Systems High Contrast Imaging Group

ALICE team:

Elodie Choquet Laurent Pueyo J. Brendan Hagan Elena Gofas-Salas Abhijith Rajan Christine Chen Marshall D. Perrin John Debes David Golimovski Dean C. Hines Mamadou N'Diaye Glenn Schneider Dimitri Mawet Christian Marois **Rémi Soummer**

Soummer et al. 2014 Choquet et al. 2014 HST cycle 21: PI L. Pueyo (WFC3), PI M. Perrin (STIS) HST cycle 22: PI E. Choquet (STIS) Consistent reprocessing of NICMOS archive: ~ 400 targets, 5600 images, mostly in J and H bands Large PSF libraries for PCA reprocessing New disks & companion candidates

2014 Sagan Exoplanet Summer Workshop, Pasadena

Elodie Choquet (STScI)

Image processing for exoplanet detection and characterization

Method: Bayesian inverse problem solving

ANDROMEDA

2- Model for the pseudo-image:

noise Flux X + (unknown)

3- Maximum likelihood:

Likelihood map \rightarrow Detection + position

Flux map \rightarrow Flux

4-Comparison to other algorithms

&

Beta-Pictoris b

ANDROMEDA

LOCI

PCA

Main interest: -Thresholding for detection -Direct flux retrieval

-Speed and accuracy

See my poster for more nice results!

Image processing for exoplanet detection and characterization

Method: Bayesian inverse problem solving

Multispectral data

What we know ...

-Spectrum star ≠ planet

- -Planet's position is still
- -Spreading of the speckles

What we want to distinguish...

-**Planets:** position and spectrum -**Speckle distribution:** Aberrations

How I will do that...

Joint estimation of object and aberrations Start from Marie Ygouf PhD results

- ► **Preparation** for real data application:
 - Refined model of coronagraphic image
 - Introduce field rotation
 - Introduce prior knowledge on planets
- → Application to real data (SPHERE):
 - Improvements, optimization ...
 - Performances assessment
 - Comparison to other algorithms

See Marie Ygouf's poster for more info about the inner method

Stability of Spectral Extractions Utilizing Project 1640 Data and the S4 Pipeline

AAron Veicht

American Museum of Natural History

Columbia University

<u>Ricky Nilsson</u>^{1,2}, AAron Veicht¹, B. R. Oppenheimer¹, Douglas Brenner¹, Neil Zimmerman^{1,3}, Rob Fergus⁴, Ian R. Parry⁵, Eleanor Bacchus⁵

¹Department of Astrophysics, American Museum of Natural History, New York, USA ²Department of Astronomy, Stockholm University, AlbaNova University Center, Stockholm, Sweden ³Now at Max Planck Institute for Astronomy, Heidelberg, Germany ⁴Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, USA ⁵Institute of Astronomy, Cambridge University, Cambridge, UK

High-Contrast Imaging and Planet Detection with Project 1640

2 (2)

KLIP speckle suppression and spectrum extraction at Project 1640

Jonathan Aguilar (Johns Hopkins University) Laurent Pueyo (Space Telescope Science Institute)

-band, before KLIP reduction

H-band, after KLIP reduction

KLIP: Karhunen-Loeve Image Projection 1)Scale and align slices $(1/\lambda)$ 2)Partition the image into search zones

- 3)Remove adjacent wavelengths from PSF lib
- 4)Compute the K-L transform of each zone
- 5)Reconstruct the zones based on top *n* modes
- 6)Subtract reconstructed zones from the true image to remove speckles

Direct Imaging of HD 19467 with Justin Crepp (Notre Dame) and Emily Rice (CUNY) and

the P1640 team

Crepp et al., 2013

Brown dwarf in a high mass-ratio system with both RV trend and NIR colors (Keck)

Proj.sep. [AU]	51.1 +/- 1.0
MJ	15.16 +/- 0.12
T _{eff} [K]	1050 +/- 40
Dynamical mass [M _.]	>51.9 +3.6/-4.6
Model mass [M _.]	56.7 +4.6/-7.2

Project 1640 imaged HD 19467 B with 32 wavelengths

Fitting atmospheric models to the P1640 spectrum

- NIR spec of prob. a T6 dwarf
- If it's 10 Gy old, evolutionary models give m~52 M_J, right at the dynamical mass limit
- If it's younger... the models are way off

JA is funded by the National Physical Science Consortium