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PTFO 8-8695b: A 3Myr-old T-Tauri Transiting Planet	


Julian van Eyken, UC Santa Barbara/LCOGT	


D. R. Ciardi (PTF Orion P.I.), J. W. Barnes, T. M. Brown, D. Dragomir, J. Eastman, C. A. Beichman, G. van Belle, K. von Braun, S. Carey, C. Crockett, 
J. J. Fortney, S. B. Howell, B. K. Jackson, C. Johns-Krull, S. R. Kane, T. Lister, B. Mazin, J. McLane, P. Plavchan, L. Prato, A. Shporer, J. R. Stauffer, and the PTF collaboration	



•  Known	
  M3	
  Weak-­‐lined	
  T-­‐Tauri	
  
•  P	
  ≈	
  11	
  hrs,	
  Rp≈1.6RJup,	
  Mp	
  ≈3-­‐4MJup	
  

•  2009	
  data	
  
•  2010	
  data	
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Figure 8. Best-fit self-consistent joint fit to both the 2009 and 2010 photometric data under the assumption that the stellar mass M∗ = 0.34 M⊙. The insets at top show
the model lightcurves, observed points (open diamonds), and synthetic images with the planet’s trajectory at five different epochs between 2009 and 2010. The time
of the 2009 observational photometry from van Eyken et al. (2012) is at far left, and the 2010 photometry is the inset at far right. The middle three insets show transit
lightcurve shapes and graphic depictions of what the transit might have looked like at three different times between the 2009 and 2010 observations, as predicted by
the fit parameters from Table 3. The bottom graph shows the model output over 1.1 yr from 2009.9 through 2011.0 UTC, with the times of the insets at top denoted
with colored vertical lines. As in the case of the 2010 individual fit shown in Figure 7, this joint fit predicts periods during which the planet does not transit at all during
the course of the system’s precession.
(A color version of this figure is available in the online journal.)

Table 4
Alignment Parameters from the Self-consistent, Joint Fit of the 2009 and 2010

van Eyken et al. (2012) Lightcurves as Propagated Back to the Time of the
2009 Transit

Back-propagated Alignment Parameters

0.34 M⊙ 0.44 M⊙

t0 30861500 s 30861370 s
i 69.◦1 72.◦7
λ 71.◦1 −76.◦1
ψ 10.◦7 12.◦8

Notes. Our model generates the same lightcurve using these as its initial values
as it does using the values at the 2010 epoch shown in Figure 3.

the 2010 transit individually, and 25◦ for the stellar obliquity ψ .
But when fitting for the 2010 transit along with the 2009 transit
and including precession, those uncertainties plummet to 5.◦2
and 0.◦3 respectively! What is going on here?

It turns out that the requirement that the 2010 initial conditions
propagate backward into the 2009 conditions via precession
constrains the system more tightly than do the transit geometries
necessary to generate the lightcurve shapes by themselves. With
the complex systemic precession as described in Section 4, the

initial conditions in 2010 must propagate into the conditions
that replicate the 2009 transit. This requirement very tightly
constrains the initial values for λ and ψ , for instance. It also
affects the planet mass Mp via the partition of the full spin-
orbit alignment angle ϕ into ϕp and ϕ∗. If the planet’s mass
is too small, then it is unable to pull the star around into the
orientation required for the other transit. If the planet’s mass is
too big, then it can pull the star around too much. Similarly, in
order for the system to arrive in the proper orientation at the right
time, the precession period directly constrains the combination
of R∗, Mp, and ϕ.

Essentially these constraints somewhat resemble those for
asteroids on a collision course with Earth. Even with uncertain
knowledge of an asteroid’s present-day orbital parameters, if
you were to know that it was going to collide with the Earth at
a certain time in the future, that would by itself give you much
more powerful knowledge of what its present-day parameters
must be even without better present-day observations. And
similar to the asteroid analogy, the further separated in time
the target is from the present, the better those constraints will
be. Thus future observations of PTFO 8-8695b transits should be
capable of driving parameters to such precision that the ultimate
uncertainties will be dominated by systematic errors instead of
measurement error.
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Transit shape change ➟ grav. darkening + orbital precession:	
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Latest	
  LCOGT	
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  shows	
  
returned	
  transits	
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  progress	
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β Pictoris b wth MagAO

VisAO Ys (0.985 um)
Males et al., 2014 (ApJ)

Clio2 M' (4.7 um)
Morzinski et al., in preparation

Also 3.1, 3.3, L'

Jared R. Males, Laird M. Close, Katie Morzinski, and the MagAO Team
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Herschel:	
  
Spectral	
  energy	
  distribution	
  is	
  well	
  fit	
  by	
  two	
  temperatures	
  but	
  the	
  Herschel	
  
imaging	
  shows	
  dust	
  spread	
  over	
  a	
  wide	
  range	
  of	
  radii.	
  



ALMA Cycle 0: 
 
Nothing detected in the image. 
 
Visibilities allow us to constrain the 
parameters of the planetesimal belt 
and the clumpiness of the disc.  



PICTURE Team:
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Figure 7. Observed SED of the ϵ Eri disk, after subtraction of the stellar photosphere, compared with the model SED. Individual photometric points include MIPS
SED flux densities at 55 and 90 µm, iteratively aperture-corrected using model images, and rescaled according to the measured MIPS 70 µm image total flux. The
thick solid line is the IRS SL + SH + LH combined spectrum, rescaled to have zero average excess for λ = 5–12 µm. The thin solid line is the total model flux
(sum of all four dust components). The two dashed lines are the contributions of the two unresolved inner belts. The dot-dashed line is the contribution of the small
(a ∼ 15 µm) silicate grains in the sub-mm ring and halo. The dotted line is the contribution of the large (a ∼ 135 µm) ice grains in the sub-mm ring.

Table 2
Model Components

Component r (AU) MT (M⊕) α a (µm) x f

W1 3 1.8 × 10−7 . . . 3.0 . . . 3.3 × 10−5

W2 20 2.0 × 10−5 . . . 8.0 . . . 3.4 × 10−5

RS 35–90 2.0 × 10−4 +0.01 6.0–23 −3.5 3.0 × 10−5

RL 35–90 4.2 × 10−3 +1.05 100–200 −3.5 4.4 × 10−6

HS 90–110 2.5 × 10−4 +0.15 15–23 −3.5 4.8 × 10−6

Notes. Columns: (1) model component: W1 = warm belt 1, W2 = warm belt 2, RS = sub-mm ring,
small grains; RL = sub-mm ring, large grains; HS = halo, small grains; (2) location; (3) total mass; (4)
mass surface density exponent, assumed to be zero for the W1 and W2 components, fitted to data for the
other components; (5) grain radius; (6) assumed grain size distribution exponent; (7) fractional luminosity,
Ld/L∗.

of the 70 µm uncertainty to the uncertainties in the uncor-
rected flux densities plotted in Figure 3(b). Once the photo-
spheric contribution is subtracted, an excess from the disk of
1.30 ± 0.25 Jy at 55 µm and 1.52 ± 0.25 Jy at 90 µm is
obtained.

4.4. Model Summary

As described in the preceding section, the overall model
of ϵ Eri’s circumstellar material includes (1) particles with
low FIR emissivity and high sub-mm emissivity, consistent
with the properties of radius a = 100–200 µm (effective
a ∼ 135 µm) amorphous H2O ice grains in the sub-mm ring
at r = 35–90 AU; (2) particles with high FIR emissivity and
low sub-mm emissivity, consistent with the properties of a =
6–23 µm (effective a ∼ 15 µm) “astronomical” silicate grains
at r = 35–110 AU, corresponding to the sub-mm ring plus an
exterior halo; (3) a narrow belt at ∼3 AU (T ∼ 120 K) of small
(a ∼ 3 µm) silicate grains; and (4) a narrow belt at ∼20 AU
(T ∼ 55 K) of small grains (a ∼ 8 µm) of undetermined, but
possibly silicate, composition. Specific properties of the model
components are presented in Table 2.

Figure 7 displays the SED of the complete model and the
separate disk components compared with the photometric and

spectrophotometric data (model photosphere SED subtracted).
Spitzer mid-IR and FIR data especially reveal a complicated
SED shape that strongly constrains the temperatures, locations,
and grain sizes of warm unresolved material. The model is
not unique but was built from the fewest components with the
simplest assumptions that produced a good match to all the
available data. Many alternate models were tested, resulting in
confidence that (1) 70 and 160 µm emission does not extend
beyond 110 AU, (2) 350 µm emission does not extend beyond
90 AU, (3) 350 µm emission does not extend inside 35 AU, (4)
the dominant emission in the sub-mm ring is not from silicate
particles, (5) 70 and 160 µm emission within 35 AU must
include nonemitting gaps, with emission restricted to annular
zones, and (6) grains in the innermost warm belt at r ∼ 3 AU
have silicate composition.

The model rises less steeply than the IRS observations at
10–18 µm. The excess flux in the model is less than 3% of the
emission from the system in that range. This may be related
to uncertainty in the photospheric model subtraction at short
wavelengths where the IR excess is barely significant, and may
also indicate the presence of crystalline silicates, with a sharp
20 µm spectral feature, combined with the amorphous silicates
assumed in the model.
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Figure 4.3: Left: Sub-aperture nulling interferometry can be performed using a single
telescope by splitting and shearing the telescope beam to mimic a two-telescope sys-
tem. Right: The single-aperture nulling interferometer produces a one-dimensional
sinusoidal transmission pattern on the sky along the shear direction. The IWA
(1.7λ/D) is defined as the location of the first maximum in the transmission pattern.

4.1.2 The Visible Nulling Coronagraph

The PICTURE mission incorporates a coronagraph design called the Visible

Nulling Coronagraph (VNC, nuller). The PICTURE VNC was built at Jet Propul-

sion Laboratory (JPL) (Rao et al. 2008; Samuele et al. 2007; Shao et al. 2006) as a

design candidate for the Terrestrial Planet Finder Coronagraph (TPF-C) mission.

This design uses interferometry to destructively cancel the light from a star while

allowing the off-axis planetary signal to pass through. A key figure of merit for coro-

nagraphs is the inner working angle (IWA), the innermost angle that can be probed

at a given contrast level. With a small IWA of 1.7 λ/D (0.5′′) and a measured sup-

pression factor of 3×10−4, the PICTURE VNC can probe the ϵ Eri dust distribution

down to an inner radius of 1.5 AU.

The optical theory employed by the VNC is nulling interferometry. This con-

cept, which is illustrated in Figure 4.3, is analogous to a two-dish radio interferometer.

Two radio dishes separated by a baseline (s) observe a relative phase delay in the

 Mission Stats: 
0.5m telescope	



~230 sec. observing time	


~240 km apogee

A dusty nearby system

July 2014, douglase@bu.edu
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Figure 13: Left: PICTURE launch. Right: Telemetry failure. The main science data telemetry transmitter
(TM 2) failed 70 seconds after launch.

7. FLIGHT, ANOMALY, RECOVERY & FUTURE WORK

PICTURE launched from White Sands Missile Range at 4:25 MDT on October 8th, 2011. Approximately 70
seconds after launch, the main science data telemetry transmitter onboard the payload failed. Figure 13 shows
the TM transmitter power during flight. This TM channel transmits the high-bandwidth 4 Mbps data stream
shown in Figure 4, which carries all of the WFS and SCI images and the WCS data products. Due to lack of
data, the in-flight performance of the nuller and active optics cannot be confirmed. Approximately 20 seconds
of flight data has been recovered, unfortunately this data is from very early in the flight, before the FPS had
acquired steering lock and thus the nuller had not begun its alignment sequence. This data may be useful in
future analysis for determining some basic functionality of the nuller and telescope.

The most important result returned from the PICTURE flight is the successful demonstration of the FPS.
In flight, the ACS acquired the calibration star, Rigel according to schedule. Manual ACS uplinks were sent to
drive the star into the acquisition mirror pinhole. The functioning FPS telemetry link showed the star appear on
the live angle tracker GSE display. An additional ACS uplink was sent to drive the star into the capture range of
the FSM at which point the FPS immediately locked on and stabilized the beam pointing. The FPS operated at
200 Hz with a 5 Hz bandwidth. Analysis of the raw centroid and FSM data that was stored onboard has shown
that the FPS stabilized the 627 mas RMS ACS radial pointing error to 5.1 mas RMS. The FSM position data
also provides a high-precision measurement of the rocket ACS performance. A power spectral density analysis
of both the ACS body-pointing and the FPS stability is presented in (Mendillo et. al. (2012) submitted).

The operation of the telescope in flight is confirmed through the FPS results. The FPS data suggests that
the telescope PSF was much larger than anticipated, nearly 10 the diffraction limit. The cause of this is yet
unknown. Unfortunately, the lightweight primary mirror shattered upon landing in the New Mexican desert.
The remaining hardware was recovered intact and appears to be in working order. Post-flight optical testing has
not yet been conducted.

Future prospects look towards a PICTURE reflight. This would first and foremost accomplish the science
and technology goals of the first mission. In addition, many lessons have been learned along the 7 year road to
flight. A number of hardware upgrades have been identified to improve the nuller performance. The two leading
contributors to OPD in the nuller, the telescope primary mirror and the DM, should be replaced. A more
rigid SiC primary would narrow the void between laboratory and space operation, giving near diffraction-limited
performance in both environments with a similar areal density. Higher quality production-run DMs are now
available from BMC. A drop-in replacement could be integrated into the nuller and run with the existing driver
electronics. The nuller calibration system could also be revived by replacing the pinhole mount with a design
that does not obscure the calibration reference beam. This would enable full nuller operation and an additional
avenue for data post-processing.
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Fbelt&=&2e$4&Fstar
Backman&et.al.&2009

SimulaMon:&8x30s&exposures
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Simulated Observation	


(Calibration PSF subtracted)

Central Star Null Depth: ~1/700	


@ Science angle (1”) <10-4	



Effective Bandwidth (600-750nm):  >10%

Background and References:	


umlcar.uml.edu/pictureb.html, blogs.bu.edu/douglase/ 	
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Imaging the ϵ-Eridani system in visible light from a sounding rocket
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Kepler-78b: An Earthlike planet… but how Earthlike?

Howard et al. (2013)

MHIRES = 1.69 ± 0.41 ME

Howard et al. (2013)
Pepe et al. (2013)

MHARPS = 1.86 + 0.38/- 0.25 ME

Sam Grunblatt
U. Hawaii  

Institute for Astronomy

ρ = 5.3 ± 1.8 g cm-3 



A Combined Analysis Method
• Gaussian Process regression fit to RV stellar activity:

• MCMC analysis of 
Gaussian Process 
regression for both 
datasets + 
planetary signal.

Sam Grunblatt
U. Hawaii  

Institute for Astronomy
(m/s)

Result: Consistent 
with previous work.
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