Introduction to Transit (and Secondary Eclipse) Spectroscopy

> Heather Knutson Division of Geological and Planetary Sciences, Caltech

Exoplanet Characterization 101:

What is the planet's bulk composition?What is its temperature?Its atmospheric composition?What about atmospheric circulation?

Hot Jupiters are **good test cases** for exoplanet characterization (big, hot, lots available). Current challenge is to explain diversity in observed properties.

Kepler, CoRoT, and Mearth are enabling the first studies of **smaller** and/or **cooler** transiting planets.

Bright Stars Make the Best Targets for Atmosphere Studies

What Do Different Types of Events Tell Us About the Planet's Atmosphere?

Secondary Eclipse

Why eclipsing systems?

Can characterize planets without the need to spatially resolve the planet's light separate from that of the star.

Scaling Laws for Transiting Planets

Always less than secondary eclipse depth.

Three ways to decrease signal: smaller planet, lower temperature, heavier atmosphere.

Characterizing Atmospheres With Transmission Spectroscopy

A good understanding of **limb-darkening** is crucial for determining the planet's wavelength-dependent radius.

Sources of Stellar Limb-Darkening Models

Claret (2000), Mandel & Agol (2002), Sing (2012)

1. Empirical

Quadratic coefficients

2. 1D Stellar Atmosphere Models

- Four-parameter nonlinear coefficients
- Kurucz/ATLAS models; good for FGK stars. Available at: <u>http://kurucz.harvard.edu</u>
- PHOENIX models; better for M stars (include TiO), higher resolution in mid-IR. Available at: <u>ftp://ftp.hs.uni-hamburg.de/pub/</u> <u>outgoing/phoenix/NextGen</u>

3. 3D Models (Hayek et al. 2012)

• HD 189733, HD 209458

Models give $I(\lambda,\mu)$ where $\mu = cos(\theta)$

Calculating LD Coefficients from a Model:

1. Calculate photon-weighted average I(µ) over desired bandpass (e.g., Sing 2012)

2. Fit $I(\mu)$ with desired limbdarkening model to obtain coefficients.

Caveats and Cautions

- Generally, the broader the band, the more reliable the prediction
- Limb-brightening in line cores
- Uncertainties are greater at shorter wavelengths
- Late M stars also more problematic (models not as reliable, well-tested)

David Sing's website is a great resource for limb-darkening coefficients: http://www.astro.ex.ac.uk/people/ sing/David_Sing/ Limb_Darkening.html

The Sun in EUV (image credit NASA/ Goddard/SDO AIA team)

Stellar Activity is Bad for Transits

Scenario 1: Occulted Spot

Scenario 2: Non-Occulted Spot

Will Stellar Activity Affect All Transiting Planets Orbiting M Stars?

HD 189733: What to do when spots are unavoidable.

Correcting for Unocculted Spots With Ground-Based Monitoring Data

Three-Step Spot Correction

(Sing et al. 2011)

- 1. Determine spot temperature from occulted spots.
- 2. Determine decrease in flux dF due to spots at time of observations.
- 3. Use model spot spectra to convert dF to band of transit observations, add dF to transit light curve and fit for transit depth.

Result: A High-Altitude Haze

What Do We Learn From Transmission Spectroscopy?

A Less Conventional Transit Observation: Doppler Shifts with High Resolution IR Spectroscopy

Detection of RV-Shifted Absorption from HD 209458b During Transit

VLT/CRIRES, Snellen et al. (2010)

R = 100,000 K band spectrum

CO absorption detected at 5.6σ

Marginally significant (2σ) blueshift -> winds?

Transmission Spectroscopy of Super-Earth Atmospheres

Miller-Ricci & Fortney (2010)

A Ground-Based Transmission Spectrum for GJ 1214b

- Medium resolution spectra with FORS2/VLT, 12" x 30" slits
- Multi-object spectroscopy with six comparison stars within 6'
- Follow-up K band spectroscopy with Magellan/MMIRS, blue filter on FORS2 (Bean et al. 2011); CFHT (Croll et al.); HST (Berta et al.); Spitzer (Desert et al.)

Planet must have water-dominated or cloudy atmosphere.

What Do Different Types of Events Tell Us About the Planet's Atmosphere?

Secondary Eclipse

See thermal radiation and reflected light from planet disappear and reappear

Transit

See radiation from star transmitted through the planet's atmosphere

Secondary Eclipse Spectroscopy

Observe the decrease in light as the planet disappears behind the star and then reappears.

Spitzer observations of HD 189733b (Charbonneau, Knutson et al. 2008)

Comparison to Models

The Atmospheric Composition of HD 189733b

What Happens When Your Planet is Not a Uniform Disk?

Secondary Eclipse Mapping

Majeau, Agol, & Cowan (2012)

Secondary Eclipses + Transits Constrain Orbital Eccentricity

Secondary Eclipses + Transits Constrain Orbital Eccentricity

Wrapping it Up: An Observation Planning Cookbook for Transits + Eclipses

Absorption During Transit (%):

 $\frac{10R_p}{R_*^2} \left(\frac{kT_p}{\mu g}\right)$ mean molecular weight

Secondary Eclipse Depth (IR):

Sara Seager

Good resources include: *Exoplanet Atmospheres* by Sara Seager, and *Exoplanets* (ed. Sara Seager)

Ground vs. Space

Pro: Stable, ultra-precise photometry + spectroscopy, higher IR sensitivity

Con: Small apertures generally limit targets to bright (V<12) stars, limited wavelengths available. Hard to do large surveys.

Pro: Better for faint stars, many bands available. Conducive to large surveys.

Con: Requires wide field of view, multiple comparison stars. Can be systematics-limited for bright stars.

Conclusion: Think Outside the Box

One outstanding mystery is whether hot Jupiters have magnetic fields... could we detect auroral emission lines from a hot Jupiter, perhaps in secondary eclipse?