

Robotic Microlensing Follow-up

Rachel Street

- Discovery and follow-up of microlensing events
- Robotic pros and cons
- Robotic approaches
- Robotic Projects

OGLE-IV Bulge Survey Fields

Requirements for Microlensing Planet Detection

Lensing events require precise alignment

- Rare
- Large sample of stars (eg Galactic Bulge)
- Crowded fields, mag range I~12-20mag
- → Ultra-wide-field instrument
 - <1 arcsec pixel scale
 - ~1m telescope
 - Non-repeating must get data now!

OGLE-IV Bulge Survey Fields

Requirements for Microlensing Planet Detection

Lensing events require precise alignment

- Rare
- Large sample of stars (eg Galactic Bulge)
- Crowded fields, mag range I~12-20mag
- → Ultra-wide-field instrument
 - <1 arcsec pixel scale
 - ~1m telescope
 - Non-repeating must get data now!
- Timescale $\tau \ge$ days months, some with fast (mins) variations (anomalies)
 - → Dedicated facilities
 - → Cadence several visits/field/night

Facilities uncommon, existing surveys single-site

Lines represent approximate duration of peak Bulge visibility from site

Survey Coverage

 Single ground-based observatory can observe for ~6-12 hrs / night

 No single ground-based survey can continuously monitor lensing events (except polar)

- Survey fields overlap in some places
 ...non-continuous coverage for much of the season
- Weather losses/technical downtime
- → Follow-up network

Global Microlensing Follow-Up Network

- 100s of microlensing events detected in Galactic Bulge each year by MOA, OGLE
- Online alerts of new events and anomalies

But...

- Must select events of interest
- Real time response imperative
- Modeling binary events non-trivial and mostly not automated
- Coordinated response required

Robotic Microlensing Follow-Up

<u>Pros:</u>

- Fast response
- Efficient use of telescope time
- Fast coordination of networked observations
- Cheaper \rightarrow more telescopes being built/converted to automated operation
- Quicker robotic data handling (used by all teams)

 Algorithmic response easier to determine observational biases

Robotic Microlensing Follow-Up

<u>Pros:</u>

- Fast response
- Efficient use of telescope time
- Fast coordination of networked observations
- $\label{eq:charge}$ Cheaper \rightarrow more telescopes being built/converted to automated operation
- Quicker robotic data handling (used by all teams)

 Algorithmic response easier to determine observational biases

<u>Cons:</u>

- Rely on algorithm to decide what's interesting
- Modeling binary lensing events non-linear, large parameter space problem
- Robust automation non-trivial

Determining Planet Frequency

• Large sample of stars should provide statistically significant sample of planet detections...or non-detections

→ Planet frequency beyond the snowline,
 down to Earth-mass objects & smaller
 → Test planet formation theories

Determining Planet Frequency

• Large sample of stars should provide statistically significant sample of planet detections...or non-detections

→ Planet frequency beyond the snowline, down to Earth-mass objects & smaller → Test planet formation theories

Problem: survey biases

→ Planet detection/exclusion requires
 continuous coverage around the peak
 → Follow only a few events continuously

 \rightarrow Prioritized by human decisions

Determining Planet Frequency

• Large sample of stars should provide statistically significant sample of planet detections...or non-detections

→ Planet frequency beyond the snowline, down to Earth-mass objects & smaller → Test planet formation theories

Problem: survey biases

 \rightarrow Planet detection/exclusion requires continuous coverage around the peak

- \rightarrow Follow only a few events continuously
- \rightarrow Prioritized by human decisions

• Two solutions:

- → Follow everything: Ground-based survey network, KMTNet Space-based WFIRST, Euclid
- \rightarrow Remove the human decision-making

Microlensing Follow-Up Sequence

Surveys issue online alerts of events in progress

Examine all known events, decide priorities

Recommend current targets per telescope

Telescopes observe targets

Image data reduced quickly

Photometry combined with existing data from all other observers

Event re-modelled, anomalies detected

Observing recommendations updated

Chi-squared Map of Lensing region

Ref: Horne et al (2009) MNRAS,396, 2087 Dominik et al. (2010) AN, 331, 671

Prioritizing Events

Estimate gain factor from return .vs. investment

 Return is the planet detection probability, function of current magnification

• Investment = t_{obs}/dt

Chi-squared Map of Lensing region

Ref: Horne et al (2009) MNRAS,396, 2087 Dominik et al. (2010) AN, 331, 671

Prioritizing Events

Estimate gain factor from return .vs. investment

 Return is the planet detection probability, a function of current magnification

• Investment = t_{obs}/dt

Sampling interval dt depends on magnification

Required exposure determined from S/N required, telescope aperture, current target brightness, observing conditions

Targets prioritized dynamically according to gain

	Robomet	Planet Search - Microlens Priority Ge						
Please specify observing parameters:								
		Telescope: Choose telescope from list 🔹 Select telescope						
Or specify telescope chara	acteristics:		OPTIMISE					
Site:	Long.	° E Lat. ° N Elev. m						
Extinction (mag/airmass)		Mean dark sky brightness @ zenith (mag/[]")						
Aperture (m)		Thruput (%)						
Bandwidth (A)		QE (%)						
Pixel (as)		Maximum exposure time (s)						
Gain (e-/adu)		RON (adu)						
Bias (adu)		Saturation (adu)						
Readout time (s)	Slew time (s)							
Data file:								
PSPL parameters from: 🤇	SIGNALME	N fit \bigcirc PLENS fit \bigcirc OGLE fit \bigcirc MOA fit $@$ All fit	s					
Last data point from: 🍥								
Date/time of begining of observations: N.B. priorities will be calculated for middle of observing session (of length 'hours/night' as below).								
O ddmmyyyy:								
○ JD: ○ Meridian (observations centred on transit of centre of OGLE fields)								
Now. Tonight (observations centred on local midnight)								
 Whenever visible (As per 'meridian' but calculates hours/night fields are above airmass=2. Overrides hours/night input below) 								
Observing conditions: Sky (mag/[]")		(calculated from lunar phase model if left blank)						
Sky (mag/[]) Seeing - psf fwhm(as)	1	Hours/night	10					
Planet detection:	1	Hours/hight	10					
Mass Ratio	0.001	DeltaChi2	25					
Minimum A0	1	Minimum normalised integrated priority	8					
Forced magnitude limit	25	Minimum instantaneous priority	0.04					
0		(those listed by SIGNALMEN/ROBONET as anomalies)						
Output:								
ITML.		O ASCII						
		Produce optimised target list	for the whole night: OPTIMISE					

DeheNet Dienet Coareh Mierelane Drievity Constant

Online Resources

<u>WebPLOP</u>

robonet.lcogt.net

Online event archive and prioritizer

Available to any observer, configurable for any telescope

Robotically queried by RoboNet system

Subscribes to ARTEMiS;

can receive recommendations from humans

	Robomet	Fianet Search - Microlens Filolity Ge	
		Please specify observing parameters:	
		Telescope: Choose telescope from list 😫 Select telescope	
Or specify telescope chara	acteristics:		OPTIMISE NOW
Site:	Long.	° E Lat. ° N Elev. m	
Extinction (mag/airmass)		Mean dark sky brightness @ zenith (mag/[]")	
Aperture (m)		Thruput (%)	
Bandwidth (A)		QE (%)	
Pixel (as)		Maximum exposure time (s)	
Gain (e-/adu)		RON (adu)	
Bias (adu)		Saturation (adu)	
Readout time (s)		Slew time (s)	
Data file:			
PSPL parameters from: 🤇	SIGNALMEN	I fit \bigcirc PLENS fit \bigcirc OGLE fit \bigcirc MOA fit $@$ All fit	ts
Last data point from: 🍥	SIGNALMEN (ALL) O PLENS O OGLE O MOA O RoboNet	
Date/time of begining of	f observations	N.B. priorities will be calculated for middle of observing se	ssion (of length 'hours/night' as below).
O ddmmyyyy:		UT:	
O JD:		$^{\bigcirc}$ Meridian (observations centred on transit of centre of C)GLE fields)
Now.		\odot Tonight (observations centred on local midnight)	
O Whenever visible	(As per 'merid	ian' but calculates hours/night fields are above airmass=2. O	verrides hours/night input below)
Observing conditions:			
Sky (mag/[]")		(calculated from lunar phase model if left blank)	
Seeing - psf_fwhm(as)	1	Hours/night	10
Planet detection:			
Mass Ratio	0.001	DeltaChi2	25
Minimum A0	1	Minimum normalised integrated priority	0
Forced magnitude limit	25	Minimum instantaneous priority	0.04
Allocated time to anor	malous events?	(those listed by SIGNALMEN/ROBONET as anomalies)	
Output:			
ITML.		O ASCII	
		Produce optimised target list	for the whole night: OPTIMISE
		Produce real-time list of bes	t events to observe: NOW

DeheNet Dienet Seensh Microlane Drievity Concreten

SIGNALMEN real-time modelling

(2011 season event overview)

Up-to-the-minute model parameters from SIGNALMEN and light curves with data from OGLE, MOA, MiNDSTEp, RoboNet-II, MONET, MicroFUN, and uFUN-PLANET

Online Resources

<u>WebPLOP</u>

robonet.lcogt.net

Online event archive and prioritizer

Available to any observer, configurable for any telescope

Robotically queried by RoboNet system

 Subscribes to ARTEMiS; can receive recommendations from humans

<u>ARTEMiS</u>

www.artemis-uk.org

SIGNALMEN flags suspected (check) or confirmed (anomaly) ongoing anomalies
Recommends obs cadence / event
Event modeling + data visualization facilities

Microlensing Follow-Up Sequence

Surveys issue online alerts of events in progress

Examine all known events, decide priorities

Recommend current targets per telescope

Telescopes observe targets

Image data reduced quickly

Photometry combined with existing data from all other observers

Event re-modeled, anomalies detected

Observing recommendations updated

RoboNet-II Status at UT: 2011-06-03 01:26:42.604313.

	Status:	Data Flow:	Data Flow:	Links:	
	Autodownload	update	Get data	Observing Calenda	
PLOP:	Plens Control	reception	ObsControl	LCOGT Quicklook	
PLOP:	Data Subscriber	pipemonitor	dicontrol	LT Quicklook	
	ARTEMIS comms	schools page	MOA updates	Live Status LCOGT	
Pipeline:	runreduction	R.D.subscriber	eventmonitor	Live Status LT	
	FTN			Plens Fit Status	
Telescopes:	FTS			School pages	
	LT			Post report	

Green = Status OK/OPEN, Orange = Status OFF/CLOSED, Red = stale process, Purple = Running but Lock file present, Grey = Status Unknown

Latest data (last 30 minutes):

c_e_20110602_061_001_1_9.fits c_e_20110602_062_001_1_9.fits

We are queuing (last 24 hours):

MOA-2011-BLG-0155 MOA-2011-BLG-0169 MOA-2011-BLG-0170 OGLE-2011-BLG-0037 OGLE-2011-BLG-0345

— RoboNet-II Submit observation form: We

OG Use with caution!

MO

Format: hh:mm:ss.s	Dec.: Format: ±dd:mm:ss.s	Name : Event name:(e.g. MOA-2011- BLG-0123)
Observing Constraints		
Type : Flexible observation 💠	Exposure Time: Exposure Time Calculator)	Exposure Count: Exposures to obtain in the group
Period : Period : Period of the observations (mins) Period of the observations (mins) fonly used for Monitor observations)		
	Instrument: EM01(FTN) +	Filter : SDSS-I 🗧
Telescope: FTN +	Instrument requested	Filter requested

Forum links: Bulge Visibility Guide to exposure times

Remember to select Simulate True/False! The webobsreg logs are available here.

ObsControl

 General-purpose software designed to run observing program with multiple targets and a dynamic target list on any number of telescopes/instruments

 Queries webPLOP for current target priorities (updated ~30min)
 Submits observing requests to telescopes Handles incoming data

Human interface:

 \rightarrow Allows humans to request observations also (operators subscribe to wider global follow-up teams and coordinate with them)

 \rightarrow Allows Target of Opportunity overrides for urgent targets

Microlensing Follow-Up Sequence

Surveys issue online alerts of events in progress

Examine all known events, decide priorities

Recommend current targets per telescope

Telescopes observe targets

Image data reduced quickly

Photometry combined with existing data from all other observers

Event re-modeled, anomalies detected

Observing recommendations updated

RoboNet-II Pipeline Status

• Last updated: 2011-06-02 21:46:06 UT Update For help interpreting this page, please look here

Status of pipeline codes running under the crontab:

- pipemonitor.py Operational. Running every 10min OFF
- dicontrol.py Operational. Running every 5min OFF
- eventmonitor.py Operational. Running every 5min OFF

Pipeline Config

Instructions on how to modify the selection of event data to be processed can be found under the $\underline{\it Pipeline}$ $\underline{\it Operations Help}$

Currently processing data for ALL events

Ongoing Reduction Processes

Event	Started N hrs ago	Node	ProcID	Red Directory	Process Status	Red Status
MOA-2011- BLG-0142_FTS_SDSS-I	0.00361111111111	2	16965	Locked	Running	ок
<u>MOA-2011-</u> <u>BLG-0169_FTN_SDSS-I</u>	0.0005555555555556	3	17232	Locked	Running	ок
OGLE-2011- BLG-0037_LT_SDSS-I	0.00944444444444	0	16673	Locked	Running	ок

Reduction Status for all events

Fully robotic DIA pipeline

- Fully automated data-reduction pipeline
- Auto-target identification

RoboNet-II Pipeline Status

MOA-2011-BLG-0169

LasLast updated: 2011-06-02 23:15:25 UT

For h

20							
atı			Number of f	rames per	filter a	nd telescope	-
	Tel	Filter	N preproc	N register	N diff	Red Status	View:
p	FTN	SDSS-I	24	24	24	halted	FTN stamp
	FTS	SDSS-I	21	21	21	halted	FTS stamp
	LT	SDSS-I	13	13	13	halted	LT stamps
		Ĩ	Finderc RoboNet Dat	hart and re		e frames Survey Data	_
						Survey Data	_
			SDSS-				
				100			
			FTN				
				d.Config			
				Reduction			
				eduction eduction			
				e Reduction	Lock		
			SDSS-	1			
			1.1				
			1.4			Finderchart	
						2.0	
			FTS	d.Config			
			Reset I	Reduction			
				eduction e Reduction	Lock		
			SDSS-	1			
			LT E				
				d.Config Reduction			

Start Reduction

Fully robotic DIA pipeline

- Fully automated data-reduction pipeline
- Auto-target identification
- Serves updated lightcurves to world community via website/upload.

Sagan Workshop 2011

RoboNet-II Pipeline Status

MOA-2011-BLG-0169

LasLast updated: 2011-06-02 23:15:25 UT

For h							
Statı			Number of f	frames per	filter a	nd telescope	
	Tel	Filter	N preproc	N register	N diff	Red Status	View:
• pipe	FTN	SDSS-I	24	24	24	halted	FTN stamp
• dice	FTS	SDSS-I	21	21	21	halted	FTS stamp
• eve	LT	SDSS-I	13	13	13	halted	LT stamps
		_	Finderc	hart and ret	erenc	e frames	_
Pipe			RoboNet Dat	ta		Survey Data	_
Instru Opera			SDSS-				
Curre Ong:				ed.Config Reduction			

Reset event form

Event : MOA-2011-BLG-0169_FTN_SDSS-I
Reset Code : 1
Reference image :
Target pixel position in fullframe reference (x,y):

Reset event Options:

Code 1: Keeping the same reference image and target location.

Code 2: Re-make the reference frame from the existing choice, auto re-identify target.

Code 3: Keeping the same reference image, auto re-identify target.

Code 4: Re-make the reference image using the frame specified here, auto-identify the target.

Code 5: Re-make the reference image using the frame specified above, with coordinates specified above.

Code 6: full reset - blitz reduction and redo. Forces auto reselection of reference image.

Submit Reset Request] Reset Input Fields

Fully robotic DIA pipeline

- Fully automated data-reduction pipeline
- Auto-target identification
- Serves updated lightcurves to world community via website/upload.
- Online facilities allow global collaborators to interact with data reductions running on LCOGT Cluster.

www.mindstep-science.org

astro.phys.au.dk/SONG

Robotic Observing Programs

<u>RoboNet</u>

- Fully automated observing system
- Human interactivity optional
- Non-dedicated (queue-scheduled+ToO) time on fully robotic telescopes

<u>MiNDSTEp</u>

- Fully automated observing system
- Time block allocated on quasi-robotic telescopes

<u>SONG</u>

 Building robotic telescopes which will join the MiNDSTEp network

Northern Hemisphere Ring

Southern Hemisphere Ring

Currently:
 3 x 2m robotic telescopes
 Liverpool Telescopes
 LCOGT Faulkes North and South

- \rightarrow Adaptive queue scheduler
- \rightarrow Non-dedicated telescopes
- \rightarrow Fully robotic observation and data reduction
- → webPLOP monitoring strategy + manual ToO for anomalies

Northern Hemisphere Ring

Southern Hemisphere Ring

Currently:
 3 x 2m robotic telescopes
 Liverpool Telescopes
 LCOGT Faulkes North and South

- \rightarrow Adaptive queue scheduler
- \rightarrow Non-dedicated telescopes
- \rightarrow Fully robotic observation and data reduction
- → webPLOP monitoring strategy + manual ToO for anomalies

Future:

 \rightarrow LCOGT and SUPA/St.Andrews building worldwide multi-aperture telescope network \rightarrow 6 sites worldwide, both hemispheres

- \rightarrow Two southern 1m to be deployed early 2012
- → Full network by 2014: 2 x 2m 10 x 1m 1 x 0.8m 18 x 0.4m

MONET 1.2m, SAAO

www.mindstep-science.org

 Quasi-robotic observing network:

 → Danish 1.54m at ESO La Silla (Chile)
 → MONET-S 1.2m at South African Astronomical Observatory

- Future network:
 + MONET-N: 1.2, at McDonald, Texas
 + SONG network (late 2011 onwards)
- Robotic observing following MiNDSTEp strategy
- Block-allocated dedicated time

- Building network of robotic 1m telescopes
- 8 sites, both hemispheres
- Deployment timetable:
- \rightarrow Prototype in Canary Islands online Sept 2011
- \rightarrow China, Argentine in 2012
- \rightarrow Chile and Hawai'i 2013
- \rightarrow South Africa/Namibia and Australia 2013/2014

Science goals
 Asteroseismology
 Microlensing

- Initially block-allocated time (may move to queue-scheduled)
- Will follow MiNDSTEp strategy

Future Directions

- Future worldwide networks of robotic telescopes
 - \rightarrow Weather/technical redundancy
 - \rightarrow Better coverage, more consistent datasets
 - → Robotic target selection
- Anomaly modeling and assessment

 newly automated, largely manual
 much improved predictive models issued
 during events guiding observations
- Prioritization of simultaneous anomalies
 Hard to do while in progress (difficult to distinguish stellar/planetary binaries until quite late on)
- → Multiple simultaneous anomalies from upgraded surveys
- Support for space-based mission

Additional Material

Prioritizing Events

For event combined lightcurve, can fit: \rightarrow PSPL model

 \rightarrow PSPL + anomaly models for planets at x,y spanning grid around the Einstein ring region

Calculate Delta chi² at each x,y

If Delta $chi^2(x,y) > threshold$, data are sensitive to planets located at $(x,y) \rightarrow map$ of detection zones

 Detection zones indicate sensitivity to planets (around major and minor image locations at time of observations)

Targets prioritized according to g values

From: Horne et al 2009, MNRAS, 396, 2087