A new database of Kepler planet candidates was released in February 2011.

We estimate that 1% to 3% of Sun-like stars have Earth-like planets.
- Count planets detected in a ‘fiducial’ region of phase space that is complete.
- Fit power laws to planet radius and ‘scaled semimajor axis’ $s = \frac{a}{\sqrt{L}}$.
- Extrapolate from the ‘fiducial region’ (cyan box) to the ‘Earth analog region’ (red box), based on the fitted power laws.
- Correct for geometrical alignment.

We find that the period PDF of Kepler super-Earth/Neptune candidates has three regimes.
- $P < 3$ days: PDF increases sharply with increasing P
- 3 days $< P < 30$ days: PDF rises more gradually with increasing P
- 30 days $< P < 132$ days: density drops gradually with increasing period.

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.