

Outline of Talk

- Why go to space?
- CoRoT
- Kepler
- Where do we go next?

Why Go to Space

- Earth-like transit around a Sun-like star
 - o.o1% (o.1 mmag) transit depth
 - 1 transit every 12 months lasting 12 hrs
 - Probability of transit: ~0.5%
 - 1/200 × the fraction of stars with earths
- Space missions provide access to
 - Extremely high precision photometry
 - Long and uninterrupted baselines
 - Extremely large number of stars

Why Go To Space

- Nothing special about a telescope in space vs on the ground
 - Collect the same number photons in the same time frame
 - Statistical (white) noise properties are very similar

- So Why Space ...
 - Minimize the ground-based (correlated) noise
 - Long baseline coverage to find the long period planets

Why Go To Space - Precision

- Uncorrelated (white) noise governed by normal statistics
 - Decreases with number of photons collected (star brightness, telescope size, integration time, binning)
 - Photon noise is primary source
- Minimize the correlated (red) noise
 - Independent of target brightness or number of measurements
 - Noise correlated from point to point limits ability of smoothing/binning
 - Sources
 - Weather
 - Comparison star noise
 - Seeing changes
 - Air mass (chromatic) effects
 - Tracking/guiding errors
 - Flat-fielding errors (

Pont 2006

Why Go To Space - Coverage

- Sensitivity to orbits of various periods is dependent upon the observing cadence and length of observing run
- The longer the orbital period the longer the observing time baseline that is needed
- Observing from the ground is limited by
 - Diurnal Cycle
 - Weather interruptions
 - Annual Cycle
- Mitigate some of this by having a network of telescopes at various longitudes (Gaspar's talk)

Ground Window Function

von Braun, Kane, & Ciardi 2009

period[days]

period[days]

Why Go To Space - Coverage

- Moving to space eliminates all three of these and enables uninterrupted and long observing cycles – in particular, the weather interruptions and the annual cycle
- To detect a 1-year orbit with a minimum of 3 transits → need 3+ years of interrupted observations

von Braun, Kane, & Ciardi 2009

Surveying from Space ...

- Has been made possible by the success of the
 - Ground-transit surveys (e.g., TrES, XO, OGLE, SuperWASP, HATNet)
 - Demonstrated high-precision photometry from spacecraft (e.g., MOST, HST)
- Followed by the explosion of follow-up characterization work (see Giovanna's talk)
- CoRoT approved 2000
- Kepler approved 2001

- Convection, Rotation and Transits
 Mission
- The first space mission with science dedicated to the discovery of exo-planets
- Launched: 27 December 2006
- Primarily CNES (France) with support from ESA, Austria, Belgium, Germany, & Spain

CoRoT: Mission Goals

- CoRoT has 2 major scientific programs
 - Stellar seismology
 - Exoplanetary Transits
- Have similar requirements
 - High precision photometry
 - High duty cycle
 - Long duration observations

CoRoT: Differing Requirements

- Stellar seismology
 - 10-100 stars
 - Precisions of 10⁻⁶
 - Very bright stars (V < 10 mag)</p>
 - Shorter duration runs (20 days)
- Exoplanetary Transits
 - 10,000 100,000 stars
 - Precisions of 10⁻⁴
 - Relatively faint stars (V 10 16 mag)
 - Long duration observations (150 days)
- Resulted in
 - Two separate channels
 - Interlaced long and short duration runs
 - Low-dispersion prism in exo-channel (3-color)

CoRoT: Telescope & Orbit

- o.3-m telescope
- Four 2048 × 2048 CCDs
 - 2.3" per pixel
- Earth polar orbit (864 km)
- Field of Regard: 10°
 - 3° × 3° Field of View
- CoRoT "Eyes"
 - α ~6h & 18h; δ ~0°
 - Spacecraft flips every 150 days

CoRoT: Preparatory Program

- Intensive pre-launch preparation and target selection program
- Had to balance seismology and exoplanet program desires
- Pre-launch archives of data collected from literature and newly collected data on thousands of candidate stars
 - Used for Final Field & Star Selections

CoRoT: Survey Strategy

- 150 day long runs
 - 20 day runs are also searched but there is less information on those fields and sensitivity to longer orbital periods is limited
 - 2 runs per year (6 full runs completed)
- Coadd flux in aperture on-board and download lightcurve
 - 32 s reads coadded to 512 seconds
 - Small subset can have 32 s sampling
 - These stars identified in "Alarm" mode from the daily downloads and quick look processing
 - Small subset: postage stamps (imagettes) are downloaded
- 10000 targets per run
 - Typically 300 candidates events
 - 50 stars selected for follow-up
 - Typically 2 4 planets/run

Aperture definition for a CoRoT target showing positions of all stars detected in ground program (Deleuil 2009)

High resolution image and aperture definition for CoRoT-3 (Deleuil 2008)

CoRoT: Follow-Up Work

- Modeling of candidate light curves only self-consistent good candidates are passed to follow-up
- Blended eclipsing binaries are main source of false positives
 - Background system
 - Hierarchical triples
- Photometric Follow-Up
 - In/out transit searching for EBs at time of transit
 - Easy to detect 10-50% EB
- Candidates that pass photometric follow-up are sent for RV confirmation

CoRoT: Challenges

- Active stars
 - Hides the transits
 - Makes follow-up difficult
- Background contamination
 - All surveys have this problem
 - CoRoT center field is crowded
- Earth-orbit
 - SAA, jumps, and discontinuities
- Half focal plane inactive as of March 2009
- Manpower
 - All projects have this problem

16

CoRoT: Results

- 14 exoplanets (with more coming)
 - 7 in anti-center field
 - 7 in center field
- Mostly Jupiter mass planets
 - Mass ~ 0.02 22 M_{Jup}
 - Orbital Period ~ 0.85 95 days
- CoRoT-1b first announced 2007
 - $M = 1.03 M_{Jup}$; $R = 1.43 R_{jup}$
 - P = 1.51 days; a = 0.03 au

CoRoT-1 Phased Curve (Barge et al. 2007)

CoRoT: Jupiters around Active Stars

CoRoT-2b Period: 1.7 d; Radius: 1.5 R; Mass: 3.3 M; Rotation of the star 4.5 d (G7V) Alonso et al. 2008 Time from start of run (days) CoRoT-6b Period: 8.9 d; Radius: 1.2 R; Mass: 3.3 M; Rotation of the star 6 d (F₅V) Fridlund et al. 2009

CoRoT: Planet or Brown Dwarf

- CoRoT-3b
 - P = 4.26
 - $M = 21.7 M_{Jup}$; $R = 1.01 R_{Jup}$
 - Star Rotation = 4 d (F₃V)
- CoRoT-15b
 - P = 3.1 d
 - $M = 60 M_{Jup}$; $R = 1.15 R_{Jup}$
- Above the traditional BD/Planet mass limit of 13 M_{Jup}
 - But how did it get in such a short orbit?
 - Did it form like a planet or like a star?
 - Gas accretion plus migration?

Deleuil et al. 2008

CoRoT: A temperate gas giant

- CoRoT-9b
 - P = 95.27, e = 0.11
 - $M = 0.84 M_{Jup}$; $R = 1.1 R_{Jup}$
 - Non-active G₃V star (M ~ 0.9 M_{sun})
 - T_{equilibrium} = 350 K
 - At time of discovery, the longest known orbital period of the known transiting planets with very modest eccentricity
 - Composition H + He + 20 M_{earth} core

Deeg et al. 2010

CoRoT: The Smallest Transiting Planet

CoRoT-7b

Leger et al. 2009

- P = 0.85 days
- $M = 4.8 M_{earth}$; $R = 1.7 R_{earth}$
- Active G9V star Prot = 23 days
- Rocky planet

- Radial velocity very challenging because of stellar activity
 - Stellar activity ~ 5 m/s
 - 100+ RV observations
 - see Suzanne Aigrain's Talk
- RV Discovery of second (non-transiting) planet CoRoT-7c
 - P = 3.7 days
 - $\overline{M} = 8.4 M_{earth}$

Queloz et al. 2010

- NASA's first mission dedicated to the exploration of exoplanets
- The first space-mission designed solely for the detection of earth-like planets around sun-like stars
- Launched: 7 March 2009

22

Kepler: Mission Goals

- Determine the frequency of planets in the habitable zones around a variety of stellar types
- Related Goals
 - Determine frequency of planets
 - Determine orbital distributions of planets
 - Determine physical characteristic distributions of planets
 - Determine the properties of exoplanet-hosting stars

Kepler: Requirements

- 150,000 stars measured at precisions of 10⁻⁶
 - Relatively faint stars (V = 10 16 mag)
 - Very large area of the sky
- Long duration observations (3+ years)
- Resulted in
 - Extremely large focal plane array
 - Earth-trailing solar orbit

Kepler: Telescope & Orbit

- 1.4 m (0.95m clear aperture) Schmidt telescope
- 42 2200 × 1024 CCDs
 - 4" per pixel
 - 100 □ deg on CCDs
- Field Center in Cygnus
 - α ~19.5h, δ ~44.5°
 - *b*~13°; β~65°
- Earth-trailing solar-orbit enables uninterrupted staring of single field
 - Every 20 days body point for download
 - Every 3 months spacecraft rolls 90° to maintain solar panels on Sun

Kepler: Preparatory Program

- Intensive pre-launch preparation and target selection program
- Kepler Input Catalog
 - Imaged entire Kepler field in Sloan filters – coupled to 2MASS (JHKs)
 - Source catalog complete down to Ks~14 mag.
 - 14 million stars in KIC
 - Isochrone-modeling provides stellar parameters for catalog stars
- Used for Final Target Selections

Kepler: Survey Strategy

- Single field observed for 3.5 years
- Only interruptions to cadence
 - 20-day download (spacecraft body point to Earth)
 - 90-day spacecraft roll (maintain solar power)
- Monitor 170,000 stars
 - Down select target list to 150,000 after first year
- 1 minute integrations coadded on-board for 30 minute cadence
 - 1 minute cadence available for small subset of stars
- Download postage stamp images for each target

Batalha et al. 2010

Kepler: Follow-Up Work

- Kepler downloads the pixels
 - Enables centroid measurements of center of light in photometric aperture
 - Centroids are good to a millipixel (0.004")
- Centroid shift during transit
 - Flux vs. Centroid Position (rain plots)
 - Need to know light distribution in aperture
 - Large rain plot shifts usually big warning sign

Kepler: Follow-Up

- First line of Vetting: Kepler data
 - Modeling of light curve and searching for secondary eclipse
 - Rain Plots
- Moderate precision spectroscopy to eliminate binary stars
- AO and speckle imaging
 - Nearby companions
 - Interpret rain plots
- Then: high precision RV follow-up

Kepler: Challenges

- Lost module
 - Spring 2010 1 of 21 modules failed
 - Module position rotates with quarterly rolls
- CCD issues (Caldwell et al. 2010)
 - "Argabrightening"
 - Various CCD artifacts and cross-talk
- Smallest planets detectable by Kepler are beyond the ability of the ground-resources to follow-up
 - Primary targets are faint (V= 12 15 mag)
 - Blend EB is 8-9 mag fainter
 - RV signature of an Earth around a Sun (1-3 m/s)
- Manpower
 - This is always an issue!

Kepler: First Planets

- Initial Batch of planets (January 2010)
 - $M = 0.08 2.0 M_{Jup} : R = 0.3 1.4_{Rjup}; P = 3.2 5 days$
 - Kepler-4: Neptune-sized
 - Kepler-6,7,8: Saturn-sized
 - Kepler-5: Jupiter-sized

Borucki et al 2010 Koch et al. 2010 Dunham et al. 2010 Latham et al. 2010 Jenkins et al. 2010

Kepler: First Planets

- Initial Batch of planets (January 2010)
 - $M = 0.08 2.0 M_{Jup} : R = 0.3 1.4_{Rjup}; P = 3.2 5 days$
 - Kepler-4: Neptune-sized
 - Kepler-6,7,8: Saturn-sized
 - Kepler-5: Jupiter-sized

Latham et al. 2010

Kepler: First Planets

Kepler: Characterization

- HAT-P7-b: HATNet discovered planet in Kepler Field
 - Kepler measured the secondary eclipse, planet phase variations, and stellar ellipsoidal variations induced by the planet.
 - Teq ~ 2500 K (night) 2900 K (day)
 - Star ellipsoidal variations of $\Delta R/R \sim 10^{-4}$

And ...

I haven't even talked about all the other astrophysics that can

be accomplished with these data

Binary stars

Pulsating stars

Seismology

Eruptive Variables

Where do we go next?

- CoRoT and Kepler keep going
 - CoRoT just approved for 3 year extended mission
 - Kepler has only completed 1 yr of 3.5 year mission
 - More planets across a more diverse parameter space
 - Smaller planets
 - Longer Orbits
 - Multiple Systems from transits and transit time variations
- Next Steps after CoRoT & Kepler
 - All-sky bright star transit survey
 - Provide targets for detailed planet characterization

In Closing ...

- CoRoT and
 Kepler have
 redefined the
 boundaries of
 exoplanetary
 astrophysics –
 and astrophysics
 in general
- Truly a
 phenomenal and opportunistic time ...

