Habitable Planets

Much of it stolen from Yutaka ABE University of Tokyo

1. Habitability and Water

Why water?

Importance of Liquid

Gas: highly mobile, but low material density. Solid: high density but very low mobility. Liquid: high density and high mobility

Habitable environments likely use a liquid.

H₂O is the most abundant condensible substance in the cosmos

2. Water (Ocean) planets

One kind of Habitable planet i.e., Generalized Earth

Caladan

An ocean planet where Paul Atreides was born

This image is from a video game

In this image, Caladan appears to be deep in a moist greenhouse

Water (Ocean) planets

In zero dimensions

= globally averaged consideration

Bounded thermally by

- complete vaporization
 - = runaway greenhouse
- global freezing

2.1 Runaway greenhouse

- A moist atmosphere (saturated by water vapor) has an upper limit of the outgoing infrared flux that can be emitted:
- If insolation exceeds this limit, temperature increases until complete evaporation of liquid water from the surface.
- The runaway greenhouse limit is also called the "critical flux"

Ingersoll-Komabayashi limit

- (1) Radiative equilibrium in the stratosphere
- (2) Condensation at the tropopause
- (3) Optical depth at the tropopause

Gray Approximation:

(1)
$$\sigma T_{t}^{4} = \frac{1}{2} F_{IR}^{\uparrow} \left(\frac{3}{2} \tau_{t} + 1 \right) \qquad \tau_{t} = \frac{2}{3} \left(\frac{2\sigma T_{t}^{4}}{F_{IR}^{\uparrow}} - 1 \right)$$

(2)
$$p^{*}(T) = p_{0}^{*} e^{-L/RT} \qquad \checkmark \qquad \tau_{t} = \frac{\kappa_{v} h p_{0}^{*} m_{v}}{g \overline{m}} e^{-L/RT_{t}}$$

(3)
$$\tau_{t} = \kappa_{v} h p^{*}(T) \frac{m_{v}}{g \overline{m}} \qquad \tau_{t} = \frac{\kappa_{v} h p_{0}^{*} m_{v}}{g \overline{m}} e^{-L/RT_{t}}$$

 F_{IR} = planetary thermal radiation T_{f} =Tropopause Temperature L = latent heat condensation h = relative humidity κ_v = absorption [cm²/g]

 $m_{v,m}$ = mol weights of vapor, atm

IR Optical Depth at Cold Trap

IR Optical Depth at Cold Trap

IR Optical Depth at Cold Trap

Simpson's Paradox (runaway in radiative-convective equilibrium)

Saturation vapor pressure p^* relates the optical depth τ to the radiating temperature *T* of the moist troposphere.

This is illustrated for a gray atmosphere:

$$F_{\rm IR}^{\uparrow}(\tau=0) \approx \int_{0}^{\infty} \sigma T^4 e^{-3\tau/2} \frac{3}{2} d\tau \quad (\approx 310 \text{ W/m}^2 \text{ for Earth})$$

where optical depth depends on the relative humidity *h* and the saturated column of water vapor

$$\tau(T) \propto \int_{z} h p^{*}(T(z)) dz$$

The critical flux depends weakly on g (roughly as $g^{0.25}$)

1-D follows Nakajima et al J. Atmos. Sci. (1992) GCM expts by Ishiwatari et al J. Atmos. Sci. (2002)

2.2 freezing limit

A simple global energy balance model with ice albedo feedback.

Multiple equilibria

2.3 H₂O-CO₂ Planets

The HZ in 2D!

Earth is an example of an H_2O-CO_2 Planet, to first approximation

Stability regime of liquid water

Earth-sized planet @Mars, Venus ,Earth orbit

Yutaka Abe (1993)

Evolution of the central star

Increase of insolation: Planets move right on this diagram.

Effect of carbonate formation

Decrease of CO2: Planets move downward on this diagram.

3. Land Planets

Dune (Herbert 1965) is a fictional example

Titan is an example in our Solar System

"Facts" of Dune

• Dune has powerful dust storms

- There are some evaporite deposits
- Nitrogen-oxygen atmosphere
- It is sparsely habitable near the poles

- Dune is dry!
- the tropics are extremely dry
- small polar ice caps
- extensive polar aquifers
- there are polar dews

Ocean planet and Land planet

- Water Planet (ocean planet):
- A planet with a globally wet surface.
- Precipitation and evaporation and in balance

- Land Planet:
- A planet on which the surface water distribution is dominated l^{0.7}
 the atmospheric circulation (Abe al., 2005).
- Precipitation and evaporation p in balance

Example of A Land Planet

Surface Temperature

Precipitation

Equator

Pole

Earth: tropics are stabilized by heat transport to the poles

Ocean planet: runs away when poles cannot radiate all the heat that comes from the tropics

Land planet can radiate more efficiently from dry tropics - poles stay habitable

Some idealized GCM experiments by Professor Abe

<u>Model</u>

- A general circulation model, CCSR/NIES AGCM 5.4g (T21L11 and T21L20) (Numaguti, 1999)
- An Earth-sized planet with 1 bar air atmosphere on a circular orbit.

Fixed CO_2 concentration. (345 ppm)

Spin period (= a "day") is 24 hours

```
Revolution period around the Sun (= a "year") is 360 days.
```

Obliquity =0 °

Land Planet:

Surface paremters of desert (ground albedo 0.3), No topography.

A bucket model with the saturation depth of 10 cm

No ground water transport: atmospheric controll of water distribution

Ocean Planet:

50m slab ocean

More than 100 cases are examined with various solar flux.

Abe & Abe-Ouchi 2005

The discontinuity from 415 W/ m² to 450 W/m² is caused by an albedo jump: clouds and polar caps disappear

Abe & Abe-Ouchi 2005

A dry synchronous M-dwarf planet is another form of land planet: the dry hemisphere radiates away most of the sunlight

3.2 Different Freezing limits, too

Land planets are harder to freeze than water planets.

3.3 Land Planet vs Water Planet

Titan Temperature profile

How long a planet at a given current distance from the Sun remains "habitable."

How long a planet at a given current distance from the Sun remains "habitable."

Europa under the HB Sun (butterfly metaphor)

6. Creation myths: how a Dune might evolve

Kasting's (1988) moist greenhouse model (I've added the H escape)

Some Words

- A habitable land planet appears to be more stable against the runaway greenhouse effect than an ocean planet like Caladan or Earth
- The inner edge of the HZ for land planets was inside of Venus's orbit when the Sun was young
- Land planets are also more stable against ice-albedo runaway
- There is no obvious outer limit to the HZ
 - other greenhouse gases can contribute
 - soluble greenhouse gases work better for land planets
- land planets will be among the first extrasolar habitable planets to be discovered in transit
- tidally-locked planets of M dwarfs have excellent prospects for providing habitable, Dune-like conditions

Some Words

- A habitable land planet appears to be more stable against the runaway greenhouse effect than an ocean planet like Caladan or Earth
- The inner edge of the HZ for land planets was inside of Venus's orbit when the Sun was young
- Land planets are also more stable against ice-albedo runaway
- There is no obvious outer limit to the HZ
 - other greenhouse gases can contribute
 - soluble greenhouse gases work better for land planets
- land planets will be among the first extrasolar habitable planets to be discovered in transit
- tidally-locked planets of M dwarfs have excellent
 prospects for providing habitable, Dune-like conditions