Ground-based Surveys for Exoplanets

Talk given at 2010 Sagan Exoplanet Summer Workshop July 27, 2010

Gáspár Bakos National Science Foundation Fellow Harvard-Smithsonian Center for Astrophysics

Outline of talk

- **Current TEP statistics** Role of ground-based projects • Overview of ground-based transit-search projects How does a ground-based survey work? False alarm statistics Limitations of ground-based observations The current 86(-19) transiting exoplanets (TEPs)
- Null results and by-products
- Future prospects

Ground versus space

- Ground-based surveys pioneered the discovery, characterization of TEPs, including most of the methodology used in the field, such as search methods, reconnaissance, and confirmation of planets.
- Space-based surveys (so far) primarily found planets around fainter host stars (but this is subject to change).
- Space-based surveys have the potential for extremely good light curve parameter determination (duration, depth, ingress/egress duration, etc).
- Space-based surveys have the sensitivity for TDV, TTV, exomoons, and long period planets.
- Ground-based surveys produced planets with better established mass (and, in general, smaller error-bars on quantities that depend on stellar parameters, or brightness of the host star)
- Ground-based surveys are cheap

Space-based discoveries

R_P [R_{Jup}]

Ground-based discoveries

R_P [R_{Jup}]

TEP statistics

- Altogether 86 confirmed, announced^{*} TEPs
- RV discoveries with subsequent confirmation of the transit
 (6): HD-209458b, HD-149026b, HD-189733b, GJ-436b, HD-17156b, HD-80606b
 - RM-effect: HD-189733b
 - Spitzer observations: HD-80606b
- Transit (survey) discoveries (80)
- Ground-based: 67, space-based: 19

Science that has come out of TEPs

Inclination, true mass, radius (if stellar radius and mass are known*) → density, structure
Presenting targets for detection of planetary atmospheres via transmission spectroscopy or occultation spectroscopy
Presenting targets for measurements of planetary surface temperature via the occultation of the planet (Spitzer)
Sky projected angle of stellar spin axis and planetary orbital normal via the RM-effect → formation
Refine (through a/R_{*} and RV) stellar parameters

Confirmation and characterization of space-based discoveries

•Transit timing variations \rightarrow perturber bodies

Transit Search Programmes

Programme		D	focal	$\Omega^{0.5}$	Nx	Ny	no. of	pixel	sky	star	d	stars	planets
		(cm)	ratio	(deg)	(kpix)	(kpix)	CCDs	(arcsec)	mag	mag	(pc)	(x10 ³)	/month
1	PASS	2.5	2.0	127.25	2.0	2.0	15	57.75	6.8	9.4	83	18	6.3
2	WASP0	6.4	2.8	8.84	2.0	2.0	1	15.54	9.6	11.8	246	2	0.8
<u>3</u>	ASAS-3	7.1	2.8	11.21	2.0	2.0	2	13.93	9.9	12.0	272	5	1.7
<u>4</u>	RAPTOR	7.0	1.2	55.32	2.0	2.0	8	34.38	7.9	11.1	179	33	11.7
<u>5</u>	<u>TrES</u>	10.0	2.9	10.51	2.0	2.0	3	10.67	10.5	12.7	362	10	3.5
<u>6</u>	<u>xo</u>	11.0	1.8	10.06	1.0	1.0	2	25.00	8.6	11.9	258	3	1.2
<u>7</u>	HATnet	11.1	1.8	19.42	2.0	2.0	6	13.94	9.9	12.5	338	28	9.7
8	SWASP	11.1	1.8	31.71	2.0	2.0	16	13.94	9.9	12.5	338	74	26.0
<u>9</u>	Vulcan	12.0	2.5	7.04	4.0	4.0	1	6.19	11.6	13.4	497	12	4.1
<u>10</u>	RAPTOR-F	14.0	2.8	5.93	2.0	2.0	2	7.37	11.3	13.4	498	8	2.9
<u>11</u>	BEST	19.5	2.7	3.01	2.0	2.0	1	5.29	12.0	14.2	668	5	1.8
<u>12</u>	Vulcan-S	20.3	1.5	6.94	4.0	4.0	1	6.10	11.7	14.1	642	24	8.5
<u>13</u>	SSO/APT	50.0	1.0	5.05	2.9	3.1	2	4.20	12.5	15.5	1103	65	22.8
<u>14</u>	RATS	67.0	3.0	1.31	2.0	2.0	1	2.30	13.8	16.4	1548	12	4.2
<u>15</u>	TeMPEST	76.0	3.0	0.77	2.0	2.0	1	1.35	15.0	17.1	1944	8	2.9
<u>16</u>	EXPLORE-OC	101.6	7.0	0.32	2.0	3.3	1	0.44	17.1	18.4	2881	5	1.6
<u>17</u>	PISCES	120.0	7.7	0.38	2.0	2.0	4	0.33	17.1	18.6	3045	8	2.7
<u>18</u>	ASP	130.0	13.5	0.17	2.0	2.0	1	0.30	17.1	18.7	3125	2	0.6
<u>19</u>	OGLE-III	130.0	9.2	0.59	2.0	4.0	8	0.26	17.1	18.7	3125	20	7.1
<u>20</u>	STEPSS	240.0	0.0	0.41	4.0	2.0	8	0.18	17.1	19.5	3757	17	5.9
<u>21</u>	INT	250.0	3.0	0.60	2.0	4.0	4	0.37	17.1	19.5	3800	37	13.1
<u>22</u>	ONC	254.0	3.3	0.53	2.0	4.0	4	0.33	17.1	19.5	3817	30	10.5
<u>23</u>	EXPLORE-N	360.0	4.2	0.57	2.0	4.0	12	0.21	17.1	19.9	4196	46	16.2
<u>24</u>	EXPLORE-S	400.0	2.9	0.61	2.0	4.0	8	0.27	17.1	20.0	4313	58	20.1

Note: most of these are not operational any more!

From Keith Horne, 2001

Project FOVs

Projects that found planets Las Campanas: OGLE

STARE +

Tim Brown

PSST, Sleuth = TrES

Ted Dunham, Georgi Mandushev

Dave Charbonneau

XO + ET

Peter McCullough

The HAT instrument (HATNet)

Gaspar Bakos et al.

The Wise-HAT telescope (WHAT)

Geza Kovacs, Tsevi Mazeh

SuperWASP (North + South)

Don Pollacco, Andrew Cameron et al.

MEarth

Dave Charbonneau, Jonathan Irwin et al.

Transitsearch.org

X Find:

Another essential resource: www.oklo.org

AXA (Bruce Gary)

Amateur Exoplanet Archive (AXA)

		# Transit LCs													
##	Object	RA		Dec	V-	mag	B-V	HJDo		Perio	d	De	epth	Length	
b	Season	(# OOT L	.Cs)												
								[days]	[mmag]	[hours]	11	[onth]			
37	WASP-12	06:30:33	+29:40.3	11.69	0.42	4506.976	51	1.091423	16.5	2.95	0.36	01.0	0(0)		
36	COROT-4	06:48:47	-00:40.4	13.7	0.??	4141.364	416	9.20205	14.0	4.42	0.??	01.0	0(0)		
35	CoRoT-3	19:28:13	+00:07.3	13.29	0.91	4283.138	33	4.25680	5.2	3.77	0.55	07.1	0(0)		
34	CoRoT-1	06:48:19	-03:06.1	13.6	0.57	4159.453	32	1.5089557	24.8	2.46	0.??	01.0	1(0)		
33	HAT-P-8	22:52:10	+35:26.8	10.26	0.??	4437.675	582	3.076320	7.0	3.6	0.32	09.2	0(0)		
32	WASP-11	03:09:29	+30:40.4	11.89	0.??	4729.900	531	3.7224690	22.4	2.59	0.24	11.5	2(0)		
31	HAT-P-9	07:20:40	+37:08.4	12.30	0.50	4417.907	77	3.92289	14.0	3.3	0.52	01.3	0(0)		
30	WASP-10	23:15:58	+31:27.8	12.7	0.??	4357.858	303	3.0927600'	37	2.14	0.58	09.4	6(0)		
29	WASP-14	14:33:06	+21:53.7	9.75	0.46	4465.819	963	2.243756	11.7	2.78	0.51	05.1	1(0)		
28	X0-5	07:46:52	+39:05.7	12.13	0.84	4485.666	54	4.187732	13.8	3.05	0.55	01.5	7(0)		
27	xo-4	07:21:34	+58:16.0	10.67	0.57	4485.932	22	4.12502	09.7	4.58	0.18	01.4	8(1)		
26	WASP-7	20:44:10	-39:13.5	9.51	.??	3985.014	19	4.954658	10	3.67	0.08	08.1	0(0)		
25	HAT-P-7	19:28:59	+47:58.2	10.5	?.??	3790.259	93	2.2047214'	07.1	3.88	0.37	07.4	8(0)		
24	CoRoT-2	19:27:07	+01:23.0	12.57	?.??	4237.535	562	1.7429964	35.2	2.27	?.??	07.4	12(1)		
23	WASP-5	23:57:24	-41:16.6	12.26	?.??	4373.995	598	1.6284279	12.5	2.37	0.31	09.8	0(0)		
22	WASP-4	23:34:15	-42:03.7	12.5	?.??	4383.313	3070	1.3382324	34	2.12	0.06	09.7	1(0)		
21	WASP-3	18:34:32	+35:39.7	10.64	?.??	4605.559	915	1.846834	12.2	2.71	0.51	07.0	12(0)		
20	HAT-P-6	23:39:06	+42:28.0	10.54	0.34	4035.675	575	3.852985	10.1	3.42	0.60	09.5	2(0)		
19	HAT-P-5	18:17:37	+36:37.3	12.03	0.62	4241.776	563	2.788491	14.0	3.0	0.42	06.9	4(0)		
18	HD 17156	02:49:45	+71:45.2	08.17	0.64	4438.482	24'	21.21649'	06.6	3.05	0.55	11.3	8(3)		
17	HAT - P - 4	15:19:58	+36:13.8	11.21	0.57	4245.815	54	3.056536	09.6	4.2	0.01	05.6	3(0)		
16	TrES-4	17:53:13	+37:12.7	11.34	0.48	4230.905	53	3.553888'	14.5	3.53	0.75	07.2	5(1)		
15	HAT-P-3	13:44:22	+48:01.7	11.86	0.8	4218.750	56'	2.90088'	16.8	2.04	0.49	04.5	13(0)		
14	<u>xo-3</u>	04:21:53	8 +57:49.0	09.80	0.45	4449.8	672'	3.1915228'	09.8	2.87	0.70	12.0	23(2)	
13	GJ 436	11:42:11	+26:42.4	10.68	1.52	4280.781	L48	2.643904	08.1	0.95	0.92	03.5	38(9)		
12	<u>xo-2</u>	07:48:08	+50:13.2	11.18	0.82	4147.749	902	2.6158605'	14.2	2.67	0.16	01.5	32(3)		
11	TrES-3	17:52:07	+37:32.8	12.40	0.71	4185.910	07'	1.306186'	27.2	1.29	0.82	06.7	37(3)		
10	HAT-P-2	16:20:36	+41:02.9	08.71	0.41	4213.479	94	5.63341	05.5	3.46	0.54	06.0	0(0)		
09	<u>xo-1</u>	16:02:12	+28:10.2	11.19	0.66	3808.917	709'	3.941502'	23.5	2.91	0.73	05.9	38(4)		
08	WASP-2	20:30:54	+06:25.8	11.98	1.02	3991.513	38'	2.1522221'	19.5	1.74	0.39	08.0	18(5)		
07	WASP-1	00:20:40	+31:59.4	11.65	0.54	3151.486	5	2.519955'	14.6	3.67	0.3	10.0	12(0)		
06	TrES-2	19:07:14	+49:19.0	11.41	x.xx	3957.637	72'	2.470600'	17.1	1.71	0.83	07.3	27(1)		
05	HAT-P-1	22:57:47	+38:40.5	10.4x	0.6x	4363.946	556	4.4652934	14	2.65	0.70	09.3	2(0)		
04	HD 189733	20:00:43	+22:42.7	07.67	1.08	3988.805	51'	2.2185629'	29.0	1.70	0.66	07.7	23(1)		
03	HD 149026	16:30:30	+38:20.8	08.16	0.56	4327.372	211	2.8758887	03.0	3.31	0.45	06.0	0(0)		
02	TrES-1	19:04:10	+36:38.0	11.79	0.78	3898.873	330'	3.0300703'	25.1	2.47	0.76	07.3	22(0)		
×	Find:		Previous	Next	/ Hiahliah	it all 🗖 Mate	h case								

🛛 🗬 Previous 🛛 🌩 Next 🖉 Highlight <u>a</u>ll 🛛 🗖 Mat<u>c</u>h case

TRESCA and ETD (Czech)

How does a ground-based survey work?

•Operations, data acquisition and transfer •Data reduction: calibration, astrometry, photometry, light curve generation Trend filtering algorithms: TFA, Sysrem •Candidate search: BLS Candidate evaluation: tools of all sort Reconnaissance follow-up phase (spectroscopy and photometry) Confirmation-mode follow-up (high precision RVs, blend analysis, activity) Analysis of results, physical interpretation Dissemination of results

Follow-up scheme

HATNet: an example

HATs at Mauna Kea

HAT-South first light image (1 chip out of 4)

HATNet and HATSouth computers

Photometric precision, systematics and trend filtering

The Trend Filtering Algorithm

With TFA

RAW

BLS: search algorithm for transits

ŝ

BLS: search algorithm for transits

Follow-up observations

- HATNet has found ~1200 transiting planet *candidates*
- Intensive and coordinated follow-up effort to weed out false alarms: F+M binaries, grazing EBs, triples (52%), giants (18%), resolved blends (11%), false photometry (10%), rapid rotators (15%).
- Photometry follow-up with 0.25m TopHAT and 1.2m FLWO telescopes
- High resolution low S/N "reconnaissance" spectroscopy with the 1.5m FLWO reflector + Digital Speedometer or TRES
- Additional low S/N spectroscopy: ANU 2.3m, DuPont 2.5m, NOT/FIES 2.3m.
- About 1 in 20 candidates survives. These survivors reach Keck or FIES/NOT: the peak of the follow-up pyramid.

High precision RV observations of transit candidates

- Phase of expected RV curve known in advance!
- Highly optimized observing strategy, taking into account optimal phasing, visibility, priorities, prior history
- ~75% of Keck/FIES time is spent on targets that prove to be planet hosting stars
- Fast, "next-day" analysis helps in dynamic revision of the scheduling
- Outcome: atmospheric parameters (SME), RVs, bisector spans (BS),activity (S), high resolution snapshots

HTR294-001 P=3.054696 RA=315.04063 DEC=19.518671 V=10.033

HTR294-002 P=1.67609 RA=313.283465 DEC=19.364672 V=10.947

HTR294-003 P=4.79395 RA=315.291112 DEC=22.255413 V=12.017

Example of a post-Keck impostor: HTR204-007

STAR: HAT-204-0001965 f=0.5331586 P=1.88d q=0.0524 qrat=0.919 E=52951 dip=0.0082 diprat: 0.872 ressig=0.0054 SNR=41.43 DSP=26.4 GEZADSP=1.51 NTR=21 NTRP=294.0 NTV=99987 qgress=0.1919 sigoot=5.41e-03 sigt=5. foot=4.6050 Acot=0.0003 fratic=0.116 RAN=0.100 JK=0.352 I=10.

Strong bisector variations \rightarrow triple

bis1a.dat (bisectors from average CF)

Example of a survivor: HAT-P-2b

R=1.16R_J M=9.09M_J $p=7.6g/cm^3$ P = 5.6d, e=0.5 Super-massive, compact hot Jupiter See Bakos et al. 2007, ApJ

Limitations of ground-based surveys

- Duty cycle can be relatively low from a single site, or with poor weather. Result: gapped time series.
- Stability is worse than from space. Result: more systematics
- Effects of the atmosphere: (refraction), extinction, scintillation

Scintillation table for D=10cm, sea level T/AM 1.0 1.2 1.4 1.7 2.0 2.4 2.8 3.5 200 0.00097 0.0013 0.0017 0.0025 0.0033 0.0045 0.0059 0.0087

Scintillation table for D=100cm, sea level T/AM 1.0 1.2 1.4 1.7 2.0 2.4 2.8 3.5 20 0.00066 0.00091 0.0012 0.0017 0.0022 0.0031 0.004 0.0059

Note, however, other limitations: RV precision, stellar jitter, stellar isochrones, parallaxes, blend analysis. These are limitations for both ground-based and space-based surveys.
Transit depth from the ground: ~2mmag or deeper.

Transit recovery (HAT-South)

The HAT-South project

- Longitudinally spaced global network of fully automated telescopes in the Southern hemisphere
- Almost 24 hour coverage
- 128 □° field of view per site
- Long period transits (up to P=20 days)
- Shallow transits: hot Neptunes and super Earths
- Joint effort of the CfA, PUC, ANU, MPIA.
- 1500 cand/yr, 20 to 60 TEP/yr

HAT-South units at LCO

The following slides can be viewed as videos on youtube: http://www.youtube.com/watch?v=fsPVDBIL0eA http://www.youtube.com/watch?v=lzgoxa8bijc http://www.youtube.com/watch?v=pvfvY0oEKsc http://www.youtube.com/watch?v=TdUK04kG-6A

The brief history of TEPs: highlights

Collaborators & friends

HATNet:

- R. Noyes, G. Torres, D. Latham, D. Sasselov, J. Hartman, G. Esquerdo, L. Buchhave, B. Béky (CfA)
- G. Marcy, A. Howard (UCB), D. Fischer (SFU), J. Johnson (Caltech)
- Géza Kovács (Konkoly)
- I. Papp, P. Sári, J. Lázár (H.A.S)
 HAT-South:
- A. Jordán, M. Rabus, V. Suc (PUC)
- T. Henning, C. Afonso, B. Csák (MPIA)
- P. Sackett, D. Bayliss, P. Conroy (ANU)
- M. Holman, Z. Csubry, K. Penev, B. Béky (CfA)
- ... and many others

Acknowledgements

- HATNet: Bohdan Paczynski, Grzegorz Pojmanski, Lajos Balázs, Emilio Falco, Robert Kirschner, Dan Fabricant, James Moran, Ray Blundell, Irwin Shapiro, Charles Alcock
- HAT-South: Wendy Freedman, Miguel Roth, Harvey Butcher, Charles Alcock
- Staff at FLWO, Mauna Kea, LCO, SSO and HESS
- National Science Foundation, NASA Origins program