Direct Characterization of Planets from Space (and Ground)-based Observatories: *Interiors*

Jonathan Fortney University of California, Santa Cruz

Thanks to: Neil Miller (UCSC), Nadine Nettelmann (UCSC), Brian Jackson (NASA Goddard)

The Realm of Exoplanet Characterization: 2010/2011

Transiting Planets, Large and Small

 75 planets have now been seen to transit their parent stars

- 70 "hot Jupiters"
- 3 "hot Neptunes"
- 2 "super Earths"

 Combination of planet radius and mass yield density --> composition

 Strong bias towards finding mass/large planets on shortperiod orbits

Transiting Planets, Large and Small

 75 planets have now been seen to transit their parent stars

- 70 "hot Jupiters"
- 3 "hot Neptunes"
- 2 "super Earths"

 Combination of planet radius and mass yield density --> composition

 Strong bias towards finding mass/large planets on shortperiod orbits Study the group as a class of planets:

For instance, Tidal and Thermal Evolution of hot Jupiters

Study one particular object in detail:

Interior Structure of GJ 1214b

 There is considerable diversity amongst the known transiting planets

Radii for planets of similar masses differ by a factor of two, which cannot happen for pure H/He objects

 $1 M_{J}$ planet with a 10 M_E core, at 0.05 AU from the Sun

 $1 M_J$ planet with a 10 M_E core, at 0.05 AU from the Sun

Evolution of "51 Pegasus b-like" planets

T. Guillot¹ and A. P. Showman²

ON THE TIDAL INFLATION OF SHORT-PERIOD EXTRASOLAR PLANETS¹

PETER BODENHEIMER,² D. N. C. LIN,² AND R. A. MARDLING^{2,3} Received 2000 May 17; accepted 2000 October 11

OBLIQUITY TIDES ON HOT JUPITERS

JOSHUA N. WINN¹ AND MATTHEW J. HOLMAN Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Received 2005 May 13; accepted 2005 June 20; published 2005 July 15

The effect of evaporation on the evolution of close-in giant planets

I. Baraffe¹, F. Selsis², G. Chabrier¹, T. S. Barman³, F. Allard¹, P. H. Hauschildt⁴, and H. Lammer⁵

POSSIBLE SOLUTIONS TO THE RADIUS ANOMALIES OF TRANSITING GIANT PLANETS

A. BURROWS,¹ I. HUBENY,¹ J. BUDAJ,^{1,2} AND W. B. HUBBARD³ Received 2006 December 22; accepted 2007 February 9

HEAT TRANSPORT IN GIANT (EXO)PLANETS: A NEW PERSPECTIVE

GILLES CHABRIER AND ISABELLE BARAFFE^{1,2} Received 2007 March 6; accepted 2007 March 28; published

TWO CLASSES OF HOT JUPITERS

BRAD M. S. HANSEN¹ AND TRAVIS BARMAN² Received 2007 June 20; accepted 2007 August 23

TIDAL HEATING OF EXTRASOLAR PLANETS

BRIAN JACKSON, RICHARD GREENBERG, AND RORY BARNES Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 Received 2007 December 5; accepted 2008 February 12

Explaining Large Radii

An area of active research!

THERMAL TIDES IN FLUID EXTRASOLAR PLANETS

PHIL ARRAS¹ AND ARISTOTLE SOCRATES²

¹ Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325, USA; arras@virginia.edu ² Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA; socrates@ias.edu Received 2009 August 7; accepted 2010 February 16; published 2010 April 6

CASSINI STATES WITH DISSIPATION: WHY OBLIQUITY TIDES CANNOT INFLATE HOT JUPITERS

DANIEL C. FABRYCKY, ERIC T. JOHNSON, AND JEREMY GOODMAN Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 Received 2007 March 16; accepted 2007 April 23

INFLATING AND DEFLATING HOT JUPITERS: COUPLED TIDAL AND THERMAL EVOLUTION OF KNOWN TRANSITING PLANETS

N. MILLER¹, J. J. FORTNEY¹, AND B. JACKSON² ¹ Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA; neil@astro.ucsc.edu, jfortney@ucolick.org ² Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA; bjackson@lpl.arizona.edu *Received 2009 May 4; accepted 2009 July 6; published 2009 August 21*

COUPLED EVOLUTION WITH TIDES OF THE RADIUS AND ORBIT OF TRANSITING GIANT PLANETS: GENERAL RESULTS

LAURENT IBGUI AND ADAM BURROWS

Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544, USA; ibgui@astro.princeton.edu, burrows@astro.princeton.edu Received 2009 February 20; accepted 2009 June 4; published 2009 July 17

INFLATING HOT JUPITERS WITH OHMIC DISSIPATION

KONSTANTIN BATYGIN AND DAVID J. STEVENSON Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; kbatygin@gps.caltech.edu Received 2010 February 18; accepted 2010 March 23; published 2010 April 15

Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity

Jérémy Leconte¹, Gilles Chabrier¹, Isabelle Baraffe^{1,2}, and Benjamin Levrard¹

Building a Model, II: Additional Interior Power

•Lower mass planets more easily influenced by a given magnitude of power source

•Power levels are generally small compared to Irradiation from the parent star ~10²⁹ erg/s

•Transit radius effect only important at low gravity

Miller, Fortney, & Jackson (2009)

Transits in multi-planets systems: A path towards direct interior constraints: k_{2b}

calculation of k_{2b} is straightforward (Sterne 1939),³

$$k_{2b} = \frac{3 - \eta_2(R_{\rm Pl})}{2 + \eta_2(R_{\rm Pl})},$$
(13)

where $\eta_2(R_{\text{Pl}})$ is obtained by integrating an ordinary differential equation for $\eta_2(r)$ radially outward from $\eta_2(0) = 0$,

$$r\frac{d\eta_2}{dr} + \eta_2^2 - \eta_2 - 6 + \frac{6\rho}{\rho_m}(\eta_2 + 1) = 0, \qquad (14)$$

Wu & Goldreich (2005) Batygin et al. (2009)

Miller, Fortney, and Jackson (2009): Tidal heating can probably inflate some planets, but it is not a cure-all

- 1. $Q_p = 10^5$ and $10^{6.5}$, $Q_s = 10^5$, with additional runs at $Q_s = 10^6$, 10^7
- 2. Measured *a*, *e*, age, with error bars
- 3. Large initial grid of *a* and *e* for each system
- Evolve forward in time to search for pathways that match the current *a*, *e*, age.
- 5. What is the radius for models that make that match?

Example XO-4b: Inflated, Current $e \approx 0$, but not well constrained

Jackson et al. (2009) *ApJ* "Observational Evidence for Tidal Disruption of Exoplanets"

Li, Miller, Lin, & Fortney (2010) *Nature* Ongoing loss of planet Wasp-12b

Fossati et al. (2010), ApJ: disk around Wasp-12

Is the ice in Neptuneclass planets solid?

No.

 All evidence for Uranus/Neptune indicates that their interiors are predominantly fluid

- A fluid "sea" of partially dissociated fluid H₂O, NH₃, and CH₄
- This is backed up by models of dynamo-generated magnetic field
- Experiments by Nellis et al. on water and "synthetic Uranus" mixtures

Uncertainties in Understanding the Interiors of Uranus and Neptune

Uranus and Neptune DO NOT have 3 well-defined layers!

Degeneracy: Many compositions yield the same mass/radius

"Exo-Neptunes" Make it Even Worse

But as we know from Uranus and Neptune, it is actually worse than this

What is the Nature of the Planet's Atmosphere and Interior?

•Mass-Radius leads to degenerate solutions:

- Mostly water with a small rocky core
 - •A "failed" giant planet core?
- •Lower ice/rock ratio, with a H/He envelope
 - •A mini Neptune?

What is the cooling history and interior state of these two kinds of models?

Relation of Atmosphere and Interior

A cooling calculation can show how warm the deep interior is, which helps constrain gas/ice/rock ratios

Water World Model

Mini Rocky Neptune Model

Conclusions

- A measurement of mass-radius yields important information about the structure of a gas giants
- Mass-radius tells us little about about the structure of Neptune-class planets, broadly defined
- Tidal heating may be important for a minority of systems
- The hottest planets have the largest radii
- •GJ1214b probably does not have a solar system analog
 - (How common are water-rich super Earths?)
 - Very large ice/rock ratio, or
 - Skin of H/He a top rock/ice core
 - Atmosphere will tell us about bulk composition