Overview of Solar System Planet Atmospheres

Yuk Yung GPS Caltech

Sagan Exoplanet Summer Workshop Jul 20 2009

* Origins

Giant planets

Small bodies

***** Terrestrial planets

* Conclusions

Atmospheres of the Solar System

- Giant planets
 - Primary atmospheres (H_2 , He, CH_4 ...)
 - Little evolution (no surface, little escape)
- Terrestrial planets (Earth, Venus, Mars, Titan)
 - Secondary atmospheres $(CO_2 / N_2, N_2 / O_2, N_2 / CH_4)$
 - Outgassed and strongly evolved (escape, surface interaction)
- Tenuous atmospheres (Pluto, Triton, Io, Enceladus)
 - In equilibrium with surface ices or internal sources
- Exospheres (Mercury, Moon, other Galilean satellites)
 - Solar flux or solar wind action on surfaces

Jupiter	H ₂ (0.93)	He (0.07)	${ m CH}_4 \ (3 imes 10^{-3})$
Saturn	H ₂ (0.96)	He (0.03)	$CH_4 (4.5 \times 10^{-3})$
Uranus	H ₂ (0.82)	He (0.15)	${ m CH_4}~(2.3 imes10^{-2})$
Neptune	H ₂ (0.80)	He (0.19)	${ m CH}_4 \ (1-2 imes 10^{-2})$
Titan	$N_2 (0.95 - 0.97)$	$CH_4 (3.0 \times 10^{-2})$	${ m H}_2~(2 imes 10^{-3})$
Triton	N ₂ (0.99)	${ m CH_4}~(2.0 imes 10^{-4})$	CO (< 0.01)
Pluto	N ₂ (?)	CH ₄ (?)	CO (?)
Io	SO_2 (0.98)	SO (0.05)	O (0.01)
Mars	CO_2 (0.95)	$N_2~(2.7 imes 10^{-2})$	Ar (1.6×10^{-2})
Venus	CO_2 (0.96)	$N_2 \ (3.5 imes 10^{-2})$	$SO_2 (1.5 \times 10^{-4})$
Earth	N ₂ (0.78)	O_2 (0.21)	Ar (9.3×10^{-3})

Table 1.3 List of three most abundant gases in planetary atmospheres. Mixing ratios are given in parenthesis. All compositions refer to the surface or 1 bar.

* Origins

*** Giant planets**

Small bodies

***** Terrestrial planets

* Conclusions

Equilibrium vs disequilibrium species in Giant Planets

At the relevant T, NH_3 is the thermodynamical equilibrium form of N \rightarrow In principle NH_3/H_2 gives the N/H ratio

... but PH_3 is NOT the equilibrium form of P

Competition between chemical destruction and vertical convective transport Quench level : where $t_{chem} \sim t_{dyn}$ Occurs at T ~1200 K for phosphine

 \rightarrow Observed PH₃ abundance still gives P/H ratio !

Comets are sources for atmospheres

16-23 July 1994

JCMT 15-m Moreno et al. 2003

HST Noll et al. 1995

Methane photochemistry in Giant Planets (a recent view...)

* Origins

- Giant planets
- *** Small bodies**
- Terrestrial planets
- Conclusions

Spectroscopy from recent space missions: the 3-D view

Study of couplings between chemistry and dynamics

... but no new detections (except many isotopes)...

In situ measurements: the chemical complexity of Titan's upper atmosphere from Cassini / INMS

Molecules detected on Titan by INMS (≈1100 km)

> 10 ppm	< 10 ppm	≈ ppm
C ₂ H ₂	C ₃ H ₄	C_6H_2
C ₂ H ₄	C3H8	CH₃C ₆ H
C ₂ H ₆	C ₆ H ₆	C ₈ H ₂
C ₄ H ₂	CH ₃ C ₆ H ₅	CH ₃ C ₃ N
HCN	CH₃CN	HC₅N
C ₂ H ₃ CN	C ₂ H ₅ CN	CH₃C₅N
HC ₃ N	C ₂ N ₂	C₅H₅N
CH ₂ NH	NH ₃	C ₆ H ₇ N

Neutral mode Ion mode Neutral + Ion mode Tentative identification

In situ measurements: methane profile and meteorology in Titan's atmosphere from Huygens

Origins

* Giant planets

Small bodies

*** Terrestrial planets**

* Conclusions

$$\left(\frac{D}{H}\right)_{Mars} = 5 \times \left(\frac{D}{H}\right)_{Earth}$$
$$\frac{D}{H}(t) = \frac{D}{H}(0) \left[\frac{H(0)}{H(t)}\right]^{1-f}$$

FIG. 1. Schematic diagram of physical processes included in the coupled chemical-aerosol microphysical model.

[Friedson et al., Icarus, 2002]

Probing below Venus' clouds

The uppermost clouds form a curtain and by day reflect sunlight back to dazzle us. By night, however, we become voyeurs able to peep into the backlit room behind

D. Allen, Icarus, 1987

WAVENUMBER (cm⁻¹)

Mars: discovery of atmospheric water in 1963

Mars' atmosphere: basic chemistry

* Detection of CO (1968) O₃ (1971), and O₂ (1972) * Detection of O₂ 1.27 emission in 1976 → tracer of ozone (and not vice versa!)

* CO_2 + h v → CO + O *O + O + M → O_2 * O_2 + O + M → O_3 * H_2O + h v → OH +H *CO + OH → CO_2 + H (stability of atmosphere) *OH → HO_2 → H_2O_2 (not detected before 2005)

Conclusions

A fundamental understanding of chemistry in planets has been achieved

Common photochemistry: hundreds of molecules, thousands of reactions

Similar Processes: Catalytic cycles, evolution, hydrodynamic escape, thermal inversion

Acknowledgements

- NASA and ESA
- Yung's Group at Caltech
- Lellouch's review 2008
- Meadows et al. 2008
- Yung and DeMore (1999) Book

Back-up slides

