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Atmospheres of the Solar System 

•  Giant planets 
–  Primary atmospheres (H2, He, CH4…) 
–  Little evolution (no surface, little escape) 

•  Terrestrial planets (Earth, Venus, Mars, Titan) 
–  Secondary atmospheres (CO2 / N2, N2 / O2, N2 / CH4) 
–  Outgassed and strongly evolved (escape, surface interaction) 

•  Tenuous atmospheres (Pluto, Triton, Io, Enceladus) 
–  In equilibrium with surface ices or internal sources  

•  Exospheres (Mercury, Moon, other Galilean satellites) 
–  Solar flux or solar wind action on surfaces 
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Equilibrium vs disequilibrium species  
in Giant Planets 

At the relevant T, NH3 is the 
thermodynamical equilibrium form of N 
 In principle NH3

 / H2  gives the N/H 
ratio 

… but PH3 is NOT the equilibrium 
form of P 

Competition between chemical 
destruction and vertical convective 
transport 
Quench level :  where tchem ~ tdyn 
Occurs at T ~1200 K for phosphine 

 Observed PH3 abundance still gives 
P/H ratio ! 
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Comets are sources for atmospheres 

JCMT 15-m 
Moreno et al. 2003 

HST Noll et al. 1995 

1995 
16-23 July 1994 



Moses et al. 2000 
(Saturn) 

Methane photochemistry in Giant Planets 
(a recent view…)  
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Spectroscopy from recent space missions:  
the 3-D view  

Study of couplings  
between chemistry  
and dynamics 

… but no new  
detections (except  
many isotopes)… 

Titan 
Cassini CIRS/(R=0.5 cm-1) 



In situ measurements: the chemical 
complexity of Titan’s upper atmosphere 

from Cassini / INMS 





In situ measurements: methane profile and 
meteorology in Titan’s atmosphere from Huygens  

Methane drizzle 
on Titan 
(Tokano et al. 2006) 
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[Friedson et al., Icarus, 2002] 



Probing below Venus’ clouds  

H3
+ on Jupiter                                    

FTS/CFHT, R= 
25000 
Bézard et al. 
1989 

The uppermost clouds form a curtain 
and by day reflect sunlight back to 
dazzle us. By night, however, we  
become voyeurs able to peep into  
the backlit room behind 

D. Allen, Icarus, 1987 
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 Mars: discovery of atmospheric  
water in 1963 

Detection of H2O 
on Mars (Spinrad  
et al. 1963) at  
0.82 micron: 

“Watershed” discovery  

 R ~100000 

Mars 

Water cycle on Mars 



 Mars’ atmosphere: basic chemistry 
* Detection of CO (1968)              * Detection of O2 1.27 emission in 1976  
O3 (1971), and O2 (1972)                 tracer of ozone (and not vice versa!) 

      *CO2 + h ν  CO + O           
*O + O + M  O2                          
*O2 + O + M O3    
*H2O + h ν OH +H 
*CO + OH  CO2 + H  
(stability of atmosphere) 
*OH  HO2  H2O2 

 (not detected before 2005) 

Noxon et al.  1976 



Conclusions 

A fundamental understanding of chemistry in planets 
has been achieved 

Common photochemistry: hundreds of molecules, 
thousands of reactions 

Similar Processes: Catalytic cycles, evolution, 
hydrodynamic escape, thermal inversion 
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