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Science goals 
 Major science goal: find 100 habitable planets 

around close M stars  
 "Complete" survey out to a certain distance to make 

relevant statistical studies 
 Very broad vision for an astrobiology mission, but still a 

valid target  
 Extend our knowledge on habitability 
 M stars have longest lives 
 Over 70% of stars are M dwarfs! Many M stars close to us (600 

within 10 pc) 

 Technically, M stars are the easiest targets for transit 
detection of planets in the HZ. 
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M stars characteristics 
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Stars with transit per spectral type 
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Models spectra of JWST follow-up on habitable SuperEarth 
around M stars 

 A lot of possible targets for further studies on the ground, 
or with JWST and other space observatories. 
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 Other goals: 
  Better understanding of M stars 

  Asteroseismology/Transit Timing 

  Extend our knowledge on diversity of exoplanets around M Stars 

  Also study K stars (closest to our sun, more interesting astrobiologically?) 
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Choosing a wavelength 
 Wavelength = 0.7 µm to 1.5 µm 

 M dwarfs are brighter between 0.5 and 1.5µm 
 We choose 0.7 instead of 0.5 to get rid of the H alpha variation 

associated with the star activity 
 We do broadband photometry in that wavelength range 



-9- 

 Number of stars to survey 
  100M stars with an habitable planet transiting = 30 000 stars surveyed x 1% transit 

prob.  X 30% have a planet in HZ 
  640 M dwarf in 10 000pc3 which implies a sphere of radius 50pc has to be surveyed 
  The magnitude of M stars at 50pc in J band is 11th  

 Sensitivity/size of the mirror 
SNR =transit depth x (transit duration x number of photons collected/unit time) ½ 

For an Earthlike crossing an M2V star, transit depth = 0.3 mmag  
To have SNR=4sigma (per transit) implies =25 x 10 6photon/hour   
Which implies a 10cm telescope 

 Thermal Requirements 
 Not really constraining in NIR, passive cooling in L2 would be enough 

Instrumentation Requirements 
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  Earthscope Camera  
 Size = 70 cm x 70 cm 
 16 camera of 4K by 4K pixels  
 Conceptual optical layout: 

Instrument Requirements 
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  Instantaneous sky access 
 20 x 20 square deg x 16 cameras (15% of the sky each per pointing) 

  Sky coverage (yearly sky access)  
 Ecliptic latitude -45 to 45 deg  (71% of sky) 
 Could reach about 96% of sky with multiple pointing 

  Duration 
  Integration time – short and multiple observation for same area – keep 

bright objects not to be saturated e.g. For 5 min integration, 10 sec X 30 
obs. 

 2 months for each field, 6 fields a year to cover the whole 40,000 
square degrees 

 At least three years, could probably stand way longer 

Instrumentation Requirements 
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Orbit 

 Consider data rate, background noise, launch cost 
 LEO rejected 

  Multiple sources of systematic errors (thermal fluctuations, etc.) 
  A lot of time lost (Earth, Moon) 
  A lot of background noise 
  South atlantic anomaly (Radiation)  

 L2 chosen 
  Simplifies the data downlink 
  Higher resolution data 
  Simplifies the data reduction (less systematic errors) 
  More opportunities for science 
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Data volume and rate 

  Let R = Data rate, C = # of cameras, P = # of pixels per camera,                 
E = Cadence Rate, B = Bits per pixel, and a factor of 1.1 for 10% overhead. 

  Thus, R = 1.1*C*P*B/E  or  E = 1.1*C*P*B/R 
  R = 3.0E8 bits/sec at 8hrs/24hrs of connection time = 1.0E8 bits/sec for     

X-band, C = 13, P = 1.7E7, B = 32 bits for 2x lossless compression. 
  Thus, E = 78 seconds for full camera download. 
  If we only download stars of interest (ala Kepler), then for 30,000 target 

stars and ~10 pixels per star we can have a cadence rate of... 
  Thus, E~1.5 seconds.  Or have a longer cadence for lower costs due to 

required connection time. 
Note: data rate can be improved a lot by transmitting only postage stamps 

around each star (say 5x5 pixels), not total array images. Kepler does this. 
Also send down ~300 sec averages, not each read.  
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Pointing requirements 

 Primary pointing constraint is to keep each star within a fraction of 
a pixel. 

  4k x 4k CCD gives 16 million pixels covering 400 square degrees 
 Each pixel covers 18 arcseconds width  
 We therefore require pointing of at least 1 arcsecond stability over 

maximum timescale of a transit ~ 12-24 hours 
 Pointing control less demanding ~ 10 arcseconds 

 Slewing: need to slew back to patch of sky each year within ~ 
arcseconds 
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Spacecraft bus 

 Depends on size of instrument, telecom capability, pointing 
capability 

  The payload is quite light (7kg/camera) we still need spacecraft C (it is better for pointing 
requirement and longer life anyway). 
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Launch mass 

 Telescope/Instrument – 7*16=112kg

 Bus – spacecraft C = 600 kg 
 Propellant – 20kg 
 Margin – 30% 

 Total mass ~ 950 kg 
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Launch vehicle 

 Mass capability – 3495 kg, payload is 950Kg, huge margin 

 Orbit – L2 

 Cost - $136M 
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The risks 

 Wide FOV  (Optical design should  pass coma or aberration test )  
 Pointing issue and slewing 
 Saturation :  Detector sensitivity dynamic range ( FWHM :~3” < 

20” (pixel scale) under sampled image   highly probable 
saturation 
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Total mission cost 
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Total mission cost 

  Instruments: 16camera *(2+1)M$= 48M$  
    2M$ for the detector, 1M$ for the camera 
 Total cost= 548M$ 
 Between a Discovery class (500M$) and ExoPlanet Probe 

(650-800M$) 
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Prospects 

A hundred Earth like Planets!!!  

  Spectroscopy. 

  Confirmation with 
other Methods. 

 Better Understanding 
of The possibility of ET 
life. 

 Search for ET life. 


