What We Have Learned from Atmospheric Entry Probes

Thomas R. Spilker

Jet Propulsion Laboratory, California Institute of Technology, USA

Sagan Summer Workshop California Institute of Technology July 23, 2009

Where Have We Delivered Entry Probes?

- Pioneer Venus Probes (1 large, 3 small)
- Many Soviet Venera probes with brief (~1 hr) landed operations
- Two Soviet Vega balloons

-Mars

- NASA Mars landers/rovers
 - Viking, Mars Pathfinder, Mars Exploration Rovers (Spirit/Opportunity), Phoenix
- -Jupiter
 - Galileo Probe
 - Outer solar system
- -Titan
 - ESA Huygens probe, delivered by NASA's Cassini Saturn orbiter

–Remote sensing techniques

- Many remote sensing techniques can see into optically thin regions
 - There are a variety of techniques using spectral, polarization, and other data
- Interiors of optically thick regions are often inaccessible
 - Seen from outside, atmospheres become optically thicker with depth
- Some remote sensing techniques have relatively large uncertainties
- Materials that are spectrally inactive are often invisible to remote sensing

-In situ techniques

- Very accurate measurements of a wide range of parameters & characteristics
 - Entirely different approaches from remote sensing, different physics
- Measurements inside optically thick regions
- Measurements of spectrally inactive constituents

What Unique Measurements Can Entry Probes Provide?

-Composition and chemistry

- Bulk planetary composition for key species (clues to formation processes)
 - Elemental ratios: H & He, "ices", noble gases
 - Isotopic ratios to high accuracy
 - Diagnostic species (e.g., CO, ortho- to para-H₂ ratio)
- Evolutionary processes
 - E.g.: Titan; CH₄ is irreversibly converted to higher hydrocarbons, nitriles, etc.
- -Atmospheric structure and energy balance
 - Vertical temperature, pressure, and density profiles; lapse rates, stability
 - Depths at which solar energy is deposited; upwelling radiant energy
- -Atmospheric dynamics
 - Lateral (winds) and vertical transport of matter and energy
- –Processes at the seams of these disciplines
 - Clouds: condensation regions of volatiles
 - Atmospheric electricity: dynamics-generated processes can cause chemical evolution

Potential Problems With Entry Probe Observations

- -Sampling a non-representative region of the atmosphere (or surface)
 - Galileo probe at Jupiter
- -Instrumentation inappropriate for the sampled environment.
 - Viking biology experiment
 - Pioneer Venus Large Probe mass spec inlet plugged by aerosol droplet
- –Equipment malfunctions: lost observations
 - Galileo probe
 - Backwards-wired accelerometer delayed heatshield deploy, 410 mb instead of 100
 - Planned measurements from tropopause to 420 mb level lost
 - Huygens
 - "Spin vanes" malfunction, spun backward during critical period
 - Channel A receiver on Cassini not turned on; lost Doppler Wind Experiment data and half of images
- -Just plain bad luck
 - Venera mineralogy instrument sensor landed on top of imager lens cap

- -Verified radio remote sensing: surface hot (730K) & 92 bar pressure
 - Powerful runaway greenhouse from atmosphere that is ~95% CO₂
 - Temperature lapse rates are close to a dry adiabat
- -Atmosphere oxidizing, not reducing (typical of terrestrial planets)
- –Precious little hydrogen left, very little H₂O
 - D/H ~100 x Earth value, implies significant loss of H from upper atmosphere (would not happen to a Jupiter-like planet at this heliocentric distance)
- -Roughly Earthlike N₂ abundance
- -Significant sulfur chemistry
 - H_2SO_4 clouds at ~1 bar, pyrolyzes to H_2O and SO_3 below ~30 km altitude
 - "Surface" visible in telescopes is top of H₂SO₄ clouds
 - Venus still active volcanically?
- -Surface sampled so far looks like basalt
 - Fe, Mg, Al, Si, O
 - Some regions yet unsampled suggest very different composition
 - E.g.: Maxwell Montes

Thomas R. Spilker 2009/07/23

-Surface pressure <1/10,000 that at Venus, and much colder

- But still mostly CO₂
- -Most of the time, atmosphere optically thin at radio, IR, & visible; surface easily detected
- -Strongly oxidizing environment; evidence of significant H loss
- $-CO_2$ condenses seasonally at the north pole (H₂O does at both poles)
 - Large seasonal variations in atmospheric pressure, wind directions & speeds, H₂O content
- -High-speed sun-driven seasonal winds cause planet-scale dust storms
 - Increased atmospheric absorption of sunlight can "inflate" atmosphere
 - Atmosphere becomes optically thick above surface, obscuring it
- -Surface composition varies greatly with location
 - Much Fe, Mg, Al, Si, O in igneous rocks & weathering products
 - Water-processed minerals in sediments: hematite, salts, perchlorate
 - Poles can be covered in H₂O and CO₂ frosts and/or snows

- -No surface, so no "surface pressure"; entire planet is gaseous
- -Strongly reducing environment; nearly everything is bonded to H
- -He abundance very nearly solar (significant error in Voyager rem sens)
- -Large number of volatile species ("ices") in troposphere
 - CH₄, H₂O, NH₃, H₂S, minor PH₃
 - C, N, O, S all ~4 x solar, ± ~30-40%, after correcting for hot-spot entry
 Expect greater enrichments at Saturn, much greater at ice giants

Findings at Jupiter - 2

- -Large variations in noble gas abundances
 - Suspect interior processes
 - Noble gas isotopic ratios close to solar values
- -D/H ~(5 ± 2) x 10⁻⁵
 - Suggests more D in solar system hydrogen than in local interstellar hydrogen

- –D/H & ³He/⁴He consistent with solar conversion of protosolar D to ³He
- -Great majority of solar energy deposited above 4-bar level; ~none at 10
 - Winds above 3-bar level are slower (150 m/s) than below (>180 m/s)
 - Suggests winds are mostly not sun-driven
- -Stable atmospheric structure
 - Lapse rates in 5-15 bar levels average -1.8 K/km; adiabatic would be -1.95
 - Would not expect convection in a hot spot

Not a planet; a planet-sized icy satellite w/ deep, extended atmosphere
 Atmosphere ~98% N₂, 1.5% CH₄ except near the surface where it is higher

-¹²C/¹³C implies continuous/periodic replenishment of atmospheric CH₄

- Suggests Titan might still be geologically active
- Detection of ⁴⁰Ar also suggests geologic activity
 - Product of rocky interior radioactive decay: ⁴⁰K -> ⁴⁰Ar
- -Low general abundance of Ar indicates N₂ in atmosphere began as NH₃
 - Planetesimal temperatures low enough to bring in N₂ should also bring in Ar
- -Absence of detectable quantities of other noble gases is puzzling

Findings at Titan - 2

-Confirmation of complex organic chemistry in atmosphere & on surface!

- Molecules with C, H, O, & N (astrobiologists take note!)
- CAS CDA detected organics (single molecules?) w/ mass up to 8,000 Daltons
- –Imager saw a mixed rock-and-sediment surface deeply modified by fluvial activity: erosion, sediment deposition
 - Most likely from methane rain (ethane mixed in?)
 - Rocks are mostly H_2O ice

Where Else Do We Need To Go?

-Saturn

- Compare to Jupiter
- Test solar system formation theories with enriched abundances of ices
- -At least one ice giant planet
 - Uranus or Neptune
 - Much higher enrichments of ices expected (formation theory test)
 - CO vertical abundance profile at Neptune could verify interior source of CO

-Triton? Pluto?

• Ice abundances, noble gases, D/H for Kuiper Belt Objects would be key

Questions?

Thomas R. Spilker 2009/07/23