

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Exoplanet Detection and Characterization with Mid-Infrared Interferometry

Rachel Akeson

NASA Exoplanet Science Institute

With thanks to Peter Lawson for providing material

Sagan Workshop July 21, 2009

Outline

- Why mid-infrared?
- Why interferometry?
- Mission characteristics and necessary technologies
- Design choices

Why mid-infrared?

1. Key atmospheric features

Why mid-infrared?

2. Contrast ratios

The solar system at 10 pcs (Traub and Jucks 2002)

Why interferometry?

1. Resolution

- 1 AU subtends 100 milliarcsec at 10 pc
 - To resolve this scale at 10 microns with a single telescope (λ /2D) you need diameter < 10 meters
 - This is possible, but requires deployed apertures
 - For an interferometer, the resolution is $\lambda/2B$, where B is the baseline between the two telescopes

Why interferometry?

- 2. Starlight suppression
- Even in mid-IR, the star is a million times brighter
- Deconstructive interference fringe can be formed (i.e. nulling)
- Different baseline lengths can be scaled for the different spatial scales
 - Detecting planet
 - Suppressing starlight
 - Phase light to produce asymmetric beam

Terrestrial Planet Finder Interferometer

Overview

- Formation Flying Mid-IR nulling Interferometer
- Starlight suppression to 10⁻⁵
- Heavy launch vehicle
- L2 baseline orbit
- 5 year mission life (10 year goal)

Science Goals

- Detect as many as possible Earth-like planets in the "habitable zone" of nearby stars via their thermal emission
- Characterize physical properties of detected Earth-like planets (size, orbital parameters, presence of atmosphere) and make low resolution spectral observations looking for evidence of a *habitable* planet and bio-markers such as O₂, CO₂, CH₄ and H₂O
- Detect and characterize the components of nearby planetary systems including disks, terrestrial planets, giant planets and multiple planet systems
- · Perform general astrophysics investigations as capability and time permit

Properties of a TPF-I Observatory

I	lustrative Properties of a TPF-I Observatory Concept		
Parameter	4-Telescope Chopped X-Array Emma Design		
Collectors	Four 2-m diameter spherical mirrors, diffraction limited at 2 μ m operating at 50 K		
Array shape	6:1 rectangular array		
Array size	$400 \times 67 \text{ m}$ to $120 \times 20 \text{ m}$		
Wavelength range	6–20 μm		
Inner working angle	13–43 mas (at 10 µm, scaling with array size)		
Angular resolution	2.4 mas to 8.2 mas (at 10 µm, scaling with array size)		
Field-of-view	1 arcsec at 10 μm		
Null depth	10 ⁻⁵ at 10 μm (not including stellar size leakage)		
Spectral resolution $\Delta\lambda/\lambda$	25 (for planets); 100 for general astrophysics		
Sensitivity	0.3 μJy at 12 μm in 14 hours (5σ)		
Target Stars	153 (F, G, K, and M main-sequence stars)		
Detectable Earths	130 (2 year mission time, 1 Earth per star)		
Exozodiacal emission	Less than 10 times our solar system		
Biomarkers	CO ₂ , O ₃ , H ₂ O, CH ₄		
Field of regard	Instantaneous 45° to 85° from anti-Sun direction, 99.6% of full sky over one year.		
Orbit	L2 Halo orbit		
Mission duration	5 years baseline with a goal of 10 years		
Launch vehicle	Ariane 5 ECA or equivalent		

General Astrophysics

Planet forming disks

Galactic Center dynamics

Imaging distant galaxies

Technology for a Mid-IR Interferometer

- Starlight suppression
 - Null depth & bandwidth
 - Null stability
- Formation flying
 - Formation control
 - Formation sensing
 - Propulsion systems
- Cryogenic systems
 - Active components
 - Cryogenic structures
 - Passive cooling
 - Cryocoolers

Design trade-offs

- Telescope aperture size vs. mission lifetime
 - Larger telescopes cost more, but can detect planets more quickly
 - Longer mission costs more
- Telescope formations
 - Equal pathlengths
 - Beam combination spacecraft

- Spectral resolution vs spectral coverage
 - For a given array size, N, the resolution is $R = \lambda N / (\lambda_{long} \lambda_{short})$
 - Better spectral resolution gives more channels across each line, but fewer lines covered

Opportunities with smaller mission

- Example: Connected interferometer
- Fourier-Kelvin Stellar Interferometer (Danchi et al)

FKSI Requirements Flowdown Science Goals Measurement Capabilities Engineering Implications Key Technologies					
Characterize Extrasolar Giant Planet Atmsopheres Measure resonant disk structures in exo-zodiacal debris disks to find and characterize extrasolar planets Understand evolution of young stellar systems and their planet forming potential Measure detailed structures inside active galactic nuclei	Near-IR and Mid-IR Imaging and Spectroscopy Spectral Range \sim 3-8 µm Angular Resolution \sim 41 (λ /5) mas Spectra Resolving Power $\lambda/\Delta\lambda \sim 25$ Field of View \sim 1-2 arcsec Sensitivity < 2 µJy continuum Observations At least one target field per day	Optical System and Metrology •2 light collectors plus nulling beam combiner and spectrometer •Baseline ~12 m •~0.5-1 m diameter collector mirrors •65 K optics ~ λ/10 rms at 632 nm • Delay line metrology ~ 3 nm • T5 nm rms pathlength control requirement •Sub-arcsecond relative pointing Detectors < 10 e-/s dark current < 10e- read noise ~128^2 pixels Orientation •Able to view >+/- 20° from ecliptic	 Detectors Very low dark current Very low read noise 35 K operating temperature desired Active and Passive Cooling Efficient high-capacity cryocoolers 30 K cryocoolers Deployable mult-layer sunshades Structures and mechanisms Deployable truss with light collectors Interferometry Cryogenic high precision delay line Cryogenic optical fibers for beam cleanup 		