

1) Detecting Earth-like planets in the habitable zone of solar-type stars

1) Detecting Earth-like planets in the habitable zone of solar-type stars

Mordasini et al 2009 Ida and Lin 2004, also Miguel and Brunini 2009

Simultaneous monitoring of GKM class stars

2) Confirming transiting candidates

Aim : 10 cm/s in 30 min around a V=16 star.

Simultaneous confirmation of Kepler candidates !

3) Study of formation, evolution and migration of EGP

Need to detect transits signatures of long-period RV planets

4) In depth understanding of the physical processes involved in planetary atmospheres

High resolution transit spectroscopy

Big questions

- How do planets form and evolve?
- Is our planetary system unique?
- ▼ Is there life elsewhere?

Logos and acronyms : whole program

Name : APHRODITE

Accurate Photometry and High Resolution Detections of Inner Terrestrial Exoplanets

Logos and acronyms : instruments

Name : CHRONOS

Characterizing with High Resolution Objects Nearby with an Optical Spectrometer Name : APOLLO

Accurate Photometry in the Optical of Lots of Low mass Objects

Strawman Instruments

- 1) CHRONOS echelle spectrograph
- Wavelength: 0.34 1.0 microns (optical & very near infra-red)
- Capability for multi-object spectrography
- Scale-setting requirement: Ability to detect Earth-analog with RV
- 🗶 R ~ 100 000
- Repeated sampling to characterize, then average over, stellar oscillations
- Cassegrain focus
- 3 calibration techniques
- 2) APOLLO photometer to enable/enhance CHRONOS
- Monitor target-star variability simultaneously with spectrograph
- Large field-of-view; 2 bands simultaneously;
 Full Frame-Transfer CCDs
- Cadence chosen for sensitivity to p-mode oscillations

Calibration

- Laser comb for wavelength calibration
 - Currently available only in the optical
- Multiple fibers for the sky
- **×** Separate photometric monitoring to monitor stellar oscillations
- Separate feed from auxiliary telescope to monitor telluric lines
 - APOLLO

Several fibers for the sky

Separate feed from auxiliary (meter-class) telescope to monitor telluric lines

Spectrometer S/N

Instrument size scales with telescope aperture

- 40 m telescopes will demand instruments with mass similar to 4-m class telescopes
- Mechanical, structures?

× Technologies currently in embyronic stage (e.g., laser comb)

- Clear pathway exists for further development
- **×** Adequate characterisation of the atmosphere

APOLLO Photometer

- ► Large field-of-view
- × 2 bands simultaneously
- Full Frame-Transfer CCDs

-18-

- × 40 m (2) and 2 m (10) (Cassegrain)
- 2 small with each big
- Hexagonal mirrors (~800 at ~1.5 meter each)
- ✗ 40 m for spectroscopy
- × 2 m for photometry and calibration

Making observing runs more exciting

Possible Telescope Locations

Other Telescope Locations

We could also put them here...

Specifications

- **Kemote access**
- **×** 2 rooms, 1 for instruments, 1 for computer
- **Kesolution is great!**

Cost Summary	
Two 40 Meter telescope	\$1.5 B (one paid, one free)
Instrument	~\$500 M
Ten 2 Meter	\$50 M
Instrument	\$10 M
Operating Cost	\$15 M/yr
Total	~ \$2.1 B

Unprecedented telescope aperture

Mechanical, structures?

Technologies currently in embyronic stage (e.g., laser comb)

Clear pathway exists for further development

Acknowledgements

Thanks to the whole team, to our advisor Kaspar Von Braun and Mercedes Lopez-Morales as well as the workshop organizers.

