Hot Jupiters: Orbital Phase Observations

Jonathan J. Fortney University of California, Santa Cruz July 21, 2009 Putting It All Together: Transiting Planets as a Tool for Studying Exoplanet Atmospheres

Secondary Eclipse

See thermal radiation and reflected light from planet disappear and reappear

Amplitude: ~0.1% Time Scale: 1-5 hours

Transit

See radiation from star transmitted through the planet's atmosphere

Transit depth: ~1% Absorption feature: ~0.01% Time Scale: 1-5 hours

Orbital Phase Variations

See cyclical variations in brightness of planet

Amplitude: ~0.01-0.1% Time Scale: 30-100 hours •Keep in mind that particular wavelengths probe particular depths in the atmosphere, such that no one wavelength can give us a day/night T_{eff} contrast

 At wavelengths where the opacity is low, we can see deeper into the atmosphere

Knutson et al. (2009)

OK, let's run through the observations

Laughlin & Fortney, oklo.org (2008)

0.5

Harrington et al. (2006), Science

The Gold Standard

Knutson et al. (2007), Nature

Exoplanet temperature mapHot and cold spots on the same hemisphere

Things to worry about

<u>The detector "ramp"</u>: Non-linear increase in measured flux, w/ time

Laughlin et al. (2009)

Starspots: Use concurrent optical observations to gauge importance

Knutson et al. (2009)

Cowan et al. (2007), MNRAS

Cowan et al. (2007), MNRAS

Cowan et al. (2007), MNRAS

29 January 2009 | www.nature.com/nature | £10

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

HOW 'HOT' A JUPITER?

The weather on HD 80606b

NATUREJOBS Research assessment

DECISION MAKING The role of the unconscious

SORGHUM GENOME **Blueprint for drought tolerance**

MEDICAL ISOTOPE SUPPLY Accelerators versus nuclear reactors

Laughlin et al. (2009), Nature

Day/Night Contrasts: Large and Small!

Harrington et al. (2006), Science

Knutson et al. (2007), Nature

Spitzer observations: large day/night temperature variations on a bit shakier ground

Light Curves at Optical Wavelengths

•Earlier in the decade, scattered ("reflected") light was expected to be seen, as a function of orbital phase

•However, measured Spitzer temperatures and MOST upper limits imply that hot Jupiters absorb nearly all incident light upon them

• Very little reflected light

 But perhaps measurable thermal emission at optical wavelengths (Lopez-Morales & Seager 2007, others)

Kepler?

These light curves serve on constraints on 2D and 3D models of hot Jupiter atmospheres

Conclusions

 Spitzer observations have been extremely important
Clear evidence for relatively good homogenization and winds in HD 189733b

 Some evidence for large day/night contrasts on more heavily irradiated planets, but not clear-cut

There will be much more data than we have right now

Unpublished Cold Spitzer Data

Warm Spitzer

 Multiple wavelengths will allow for more robust constraints on day/night T_{eff}

 Planets can appear relatively more or less homogenized as a function of wavelength

Kepler may enable optical light curves for some planets and perhaps will show planet variability over <u>300+ orbits</u>