Towards the Detection and Characterization of Smaller Transiting Planets

David W. Latham 27 July 2007

Kepler MISSION CONCEPT

- Kepler Mission is optimized for finding habitable planets (10 to 0.5 M_⊕) in the HZ (out to 1 AU) of solar-like stars
- Monitor 100,000 main-sequence stars
- Use a one-meter Schmidt telescope:
 FOV >100 deg² with an array of 42 CCD
- Photometric precision: < 20 ppm in 6.5 hours for V = 12 solar-like star
 - => 4σ detection for Earth-size transit
- Mission: Earth-trailing orbit for continuous viewing, <u>> 4 year duration</u>

Kepler Input Catalog

- Used to select optimum targets
- Includes all known stars in Kepler FOV
 - ~ 10 million stars (USNO-B)
- Photometry
 - 2MASS JHK + SDSS griz + D51
 - ~ 2 million stars down to K~14.5 mag
- Astrophysical characteristics
 - Teff, log(g), [Fe/H], reddening; Mass, Radius
 - Radial and rotational velocities

Transit Photometry

- Transit observations are hard to schedule
 Solution: combine time with Kepler photometry
- KeplerCam light curves published:
 - TrES-1, HD 149026, HD 189733, XO-1,
 - TrES-2, HAT-P-1, WASP-1, WASP-2
- Submitted:
 - TrES-3, HAT-P-2, HAT-P-3
- Coming:
 - TrES-4, HAT-P-4

FIG. 1.— The upper panel shows the unbinned HATNet and WHAT joint light curve with 26400 data-points, phased with the P = 5.63341 dependence of the period. The 5mmag deep transit is detected with a signal-to-noise of 26. The middle panel shows the same HATNet and WHAT data with the transit zoomed-in and binned with $\phi = 0.0005$ bin-size. The lower panel exhibits the Sloan z-band photometry follow-up taken by the FLWO 1.2 m telescope. Overplotted is our best (Mandel & Agol 2002) fit.

Gliese 436: R=3.8 R_{Earth}, M=23 M_{Earth}

Follow-Up Spectroscopy

- Initial reconnaissance spectroscopy
 - Identify stellar imposters
 - Characterize host star
 - CfA Digital Speedometers
 - New fiber-fed TRES instrument at FLWO
- Precise radial velocities for orbits/masses
 HIRES, HET, HARPS-North

Reconnaissance Spectroscopy

- SAO Instruments
 - CfA Digital Speedometers (1978-2007)
 - TRES fiber-fed echelle (2007-
- Success rate
 - 540 candidates: Vulcan, TrES, HAT, KELT
 - 4031 spectra so far
 - 8 confirmed transiting planets
 - A few more coming

Pushing to Lower Masses

- Keck 10-m with HIRES: 1 to 2 m/s

 1 m/s projected to require 2.5 hours at V=12

 ESO 3.6-m with HARPS: 20 to 50 cm/s
 - 1 m/s requires 1 hour at V=12
 - Located in Chile

Achieving better than 1 m/s: Stability & Simultaneous ThAr reference

 $\Delta RV = 1 m/s$ <u>Δλ=0.00001</u> A 15 nm 1/1000 pixel

ΔRV =1 m/s ↓ ΔT =0.01 K ↓ Δp=0.01 mBar

Vacuum operation

Temperature control

New Earths – HARPS North

- Collaboration with Geneva
- Ready for Kepler follow-up in 2009
- ~100 nights/year goal; MOU for WHT

Origins of Life in the Universe Initiative at Harvard

• Formally approved with funding profile, May 2006

• Synergy between 5 areas at Harvard, 3 new facilities

- Pre-biotic Chemistry
- Extraterrestrial Samples
- New Earths
- Led by Dimitar Sasselov

Other Initiatives

- All-sky survey from space
 - Smaller planets than ground-based surveys
 - Complements Kepler
 - Finds brighter targets, allows better follow-up
- Giant Telescope, Super HARPS
 Push Doppler precision to the limit

The Legacy of Kepler

- Frequency/characteristics of rocky planets
 - Mass, radius, density, orbital distributions
 - Host star characteristics
 - Information for the design of future missions

Legacy of All-Sky Survey

The brightest and nearest transiting planets

 Best targets for follow-up studies for years to come

Transiting Exoplanet Survey Satellite

MIT: Instrument, operations CfA: Optics, Science Center Ames: Spacecraft, launch All-sky survey in 2 years Neptunes, even Earths Periods up to 2 months 10^6 targets, ~ 10^3 planets University-style experiment

TESS Scientific Goals

- Survey 100% of the sky
 - Discover >1000 bright nearby transiting exoplanets
 - Period coverge up to 60 days
 - Planet size coverage down to super earths
 - Emphasize cool dwarf host stars
- Finish the survey by 2013
 - Follow up most interesting planets with HARPS (N&S)
 - Provide targets for JWST (launch in 2013)

Targets for TESS Searches

Solar-type (G+K) Stars:
 ~10⁶ brighter than I = +12

M Dwarfs:
 ~10,000 within 30 pc

Mockup of TESS Camera Array

CCDs Selected for TESS

MIT Lincoln Lab 4Kx4K, 15 µ pixels, 144 Mpixels total Frame transfer in 5 ms, Flight proven on HETE 2 Low-power hybrid electronics

M Dwarf Spectra & TESS Passband

Spectra: Brett '95 Magnitudes: Bessell '91

TESS Spacecraft (NASA Ames)

HETE-2 Satellite: "Alpha Version for TESS"

- Developed, integrated, tested on-campus at MIT
- Reliable, low cost system (\$7M spacecraft + \$18M launch)
- Launched October 2000; in operation 6+ years for GRB searches
- Low earth orbit (600 km); low inclination (i = 2 degrees)

Dedicated TESS Network (extant from HETE-2)

6. Ricker (MIT) 070608

TESS Status

- Seeking private funds (MIT and CfA)
- Seed money allocated
 - Hardware preliminary design underway
 - Lab test of prototype camera underway