GJ 436

Michaël Gillon (Geneva)

Michelson Summer Workshop - July 25, 2007

2004: first 'hot Neptunes' detected by radial velocity

GJ 436

Among them: GJ 436b (Butler et al. 2004, Maness et al. 2007)

$$M_* \sim 0.44 M_{Sun} (M2.5V)$$

 $R_* \sim 0.44 R_{sun}$
 $d = 10.2 \text{ pc}$
 $V = 10.67$

M-dwarfs and RV planets

Planet	Mass (M _{Jupiter})	Period (days)	Detection paper
GI 876 <i>b</i>	1.935	60.94	Delfosse et al. 1998; Marcy et al. 1998
GI 876c	0.56	30.1	Marcy et al. 2001
GI 876d	0.018	1.93776	Rivera et al. 2005
GI 581 <i>b</i>	0.049	5.3683	Bonfils et al. 2005
GI 581c	0.016	12.932	Udry et al. 2007
GI 581 <i>d</i>	0.024	83.6	Udry et al. 2007
GJ 436b	0.071	2.64385	Butler et al. 2004
GJ 674 <i>b</i>	0.037	4.6938	Bonfils et al. 2007
GJ 849 <i>b</i>	0.82	1890	Butler et al. 2006
GJ 317 <i>b</i>	1.2	692.9	Johnson et al. 2007

HARPS search for planets around M-dwarfs

<u>Aim</u>: investigate the dependence of planet formation on the mass of the parent star.

Catalog of 120 close, single M-dwarfs followed at the 1 - 3 ms⁻¹ precision level.

GJ 436

Photometric follow-up of the HARPS M-dwarfs candidates

GJ 436

<u>Aim 1</u>: to verify that the Doppler signal has not a stellar origin

<u>Aim 2</u>: to reject or detect the transits (only for short-period planets)

South: Euler 1.2m, La Silla (Chili)

North: OFXB 0.6m, St-Luc (Switzerland)

GJ 436: first search for transits in 2004

GJ 436

Photometry using T12 APT 0.8m two-channel photometer 226 measurements from 2003 November to 2004 June

Expected transit depth from 3 to 16 mmag

Result: 'Photometric transits of the planet across the star are ruled out for gas giant compositions and are also unlikely for solid compositions' (Butler et al. 2004)

GJ 436: second try in 2007

GJ 436

Covering of the whole transit window with OFXB 0.6m (Switzerland) 1108 V-band measurements during 8 nights Confirmation with Wise 1m and 0.46m telescopes (Israel)

First radius measurement for a hot Neptune

<u>*GJ* 436</u>

Assuming $M_* = 0.44 M_{Sun}$ and $R_* = 0.44 R_{Sun}$: $i = 86.5^{\circ} (\pm 0.2)$ $Rp = 3.95 R_{Earth} (\pm 0.41 - 0.28)$

The grazing transits of a Neptune-like planet

GJ 436

The composition of an extrasolar Neptune-mass planet

<u>GJ 436</u>

The composition of an extrasolar Neptune-mass planet

<u>GJ 436</u>

GJ 436

Constraining the composition with accurate groundbased ...

GJ 436

... and space-based photometry (1) with Spitzer Space Telescope

IRAC 8 microns primary transit

GJ 436

(1) with Spitzer Space Telescope -5 Uranus 💊 4 ٥ Neptune An H/HE envelope 3 is needed. R (R_{\oplus}) 2 GJ 436b is clearly a hot Neptune. 1 0 0 10 20 30 M (M_{\oplus}) Gillon et al. 2007b

... and space-based photometry

GJ 436

To come: 3.6, 4.5, 5.8 (IRAC), 16 (IRS) and 24 (MIPS) microns Will constraint the atmospheric composition of this hot Neptune

GJ 436

... and space-based photometry (2) with Hubble Space Telescope

NICMOS observations of the primary transit (PI: F. Pont)

e = 0.14 +- 0.01 (Demory et al. 2007): what is the cause ?

No obvious Transit Timing Variations (TTV) nor clear hint for another close planet in the RV data...

See Demory et al. (2007) and Mazeh et al. (in prep.)

GJ 436b

... appears to be a Neptune-like planet,

... but a very hot one.

Its atmospheric composition will be investigated with Spitzer at the end of the year.

Its weird orbital eccentricity is not yet solved, ... and the presence of another planet is not obvious.

The transits of small RV planets around nearby M-dwarfs can be detected from the ground,

... and these planets can be characterized much more thoroughly than the small planets that will be detected by Kepler.

Search for the transits of the HARPS M-dwarfs candidates

<u>GJ 436</u>

Example: GJ 674

