Serendipitous Detection of Transiting Planets in Future Synoptic Surveys

B. Scott Gaudi (Ohio State University)
Special Thanks To...

• Thomas Beatty (CfA, MIT)

• Cullen Blake (CfA)
Detecting Transiting Planets
Properties of current transit surveys

- Reach a required S/N on enough main-sequence stars to detect a transiting planet

- For a given type of star (i.e. FGK dwarfs):
 - At what depth (i.e. limiting magnitude) do you have enough stars in your survey area?
 - S/N should be larger than some required minimum value at that depth

\[
\frac{S}{N} \approx N^{1/2} \frac{\delta}{\sigma}
\]
Properties of current transit surveys

• Reach a required S/N on enough main-sequence stars to detect a transiting planet

• For current dedicated surveys for transiting planets:
 – At the depth where there enough stars to detect a planet:
 – S/N per point is low
 – Detection achieved using many points
For brighter stars, detection could be achieved with fewer points, but...

- Correlated noise
- Not enough stars

\[N \propto 10^{-0.6 \Delta m} \]
A Different Regime:
Sparse Sampling, Large Area, Few Observations

Avoid correlated noise:
• Sample on timescales \gg correlation timescale

Sufficient number of stars:
• Very wide area

This is the precisely the regime of future large synoptic surveys!!
Synoptic Surveys
Future Synoptic Surveys

Synoptic, adj,
1. pertaining to or constituting a synopsis; affording or taking a general view of the principal parts of a subject.

2. Meteorology Of or relating to data obtained nearly simultaneously over a large area of the atmosphere.

Astronomer’s definition: Repeated observations of a large area of the sky.
Current/Future Synoptic Surveys

SDSS-II
 • now

Pan-STARRSS
 • Early 2008

LSST
 • 2012

MPF
 • ?
Estimating the Yields of Synoptic Surveys
(with Thomas Beatty)
Estimating the Yields

• Accurate estimates difficult.

• Depend on:
 – survey strategy
 – equipment specifications
 – data analysis methods

• Approximate yields
 – Estimate total number of main-sequence stars in survey area
 – Estimate the number of transiting planets
 – Estimate limiting magnitude
Estimating the Sky Densities

Present-Day Mass Function

M_L, M_R relations

Double Exponential Thin Disk

M_V-dependent scale height

Extinction

Transit Probability

Beatty & Gaudi (in prep)
Sky Densities, Sun-like Stars

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V<12</td>
<td>0.003</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>V<14</td>
<td>0.029</td>
<td>0.009</td>
<td>0.017</td>
</tr>
<tr>
<td>V<16</td>
<td>0.219</td>
<td>0.025</td>
<td>0.087</td>
</tr>
<tr>
<td>V<18</td>
<td>1.125</td>
<td>0.026</td>
<td>0.293</td>
</tr>
<tr>
<td>V<20</td>
<td>4.052</td>
<td>0.027</td>
<td>0.800</td>
</tr>
</tbody>
</table>
Sky Densities, M Dwarfs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V<12</td>
<td>0.00001</td>
<td>0.00001</td>
<td>0.00001</td>
</tr>
<tr>
<td>V<14</td>
<td>0.00017</td>
<td>0.00015</td>
<td>0.00016</td>
</tr>
<tr>
<td>V<16</td>
<td>0.0047</td>
<td>0.0015</td>
<td>0.0028</td>
</tr>
<tr>
<td>V<18</td>
<td>0.0257</td>
<td>0.0105</td>
<td>0.0169</td>
</tr>
<tr>
<td>V<20</td>
<td>0.2081</td>
<td>0.0368</td>
<td>0.0989</td>
</tr>
</tbody>
</table>
Limiting Magnitudes

\[\frac{S}{N} \approx N^{1/2} \frac{\delta}{\sigma} \]

(white noise)

\[N \approx \frac{R}{\pi a} N_{total} \]

\[N_{total} = \frac{\epsilon T}{t_{exp} N_{fields}} \]

\[N_{fields} = \frac{\Omega_{survey}}{\Omega_{FOV}} \]

\[\frac{S}{N} = \left(\frac{\epsilon T}{t_{exp}} \frac{\Omega_{FOV}}{\Omega_{survey}} \frac{R}{\pi a} \right)^{1/2} \]

\[\frac{\delta}{\sigma} \]

(white noise)
Limiting Magnitudes

\[
\frac{S}{N} = \left(\frac{\varepsilon T}{t_{\text{exp}}} \frac{\Omega_{\text{survey}}}{\Omega_{\text{FOV}}} \frac{R}{\pi a} \right)^{1/2} \frac{\delta}{\sigma}
\]

\[
\sigma = \sigma_0 \left(\frac{t_{\text{exp}}}{t_{\text{exp},0}} \right)^{1/2} \left(\frac{D}{D_0} \right) 10^{0.2(V - V_0)}
\]

\[
V_{\text{lim}} = 5 \log \left[\left(\frac{\varepsilon T}{t_{\text{exp},0}} \frac{\Omega_{\text{FOV}}}{\Omega_{\text{survey}}} \frac{R}{\pi a} \right)^{1/2} \frac{D}{D_0} \frac{\delta}{\sigma} \left(\frac{S}{N} \right)^{-1} \right] + V_0
\]
Magnitude Limits and Yields
SDSS Magnitude Limits and Yields

• **SDSS-II**
 - Observation time = 37.5 days
 - Telescope Diameter = 2.5m
 - Efficiency = 0.5
 - Field of View = 6.25 deg²
 - Area Surveyed = 300 deg²

• **Magnitude limits**
 - Sun-like stars = 15.6
 - M dwarfs = 20.2

• **Total Yields for S/N=20**
 - Sun-like stars = 6
 - M-dwarfs = 12
Pan-STARRS Magnitude Limits and Yields

- **Pan-STARRS (Medium-Deep)**
 - Observation time = 5 months
 - Telescope Diameter = 1.8m
 - Efficiency = 0.5
 - Field of View = 7 deg²
 - Area Surveyed=1200 deg²

- **Magnitude limits**
 - Sun-like stars = 14.99
 - M dwarfs = 19.61

- **Total Yields for S/N=20**
 - Sun-like stars = 19
 - M-dwarfs = 37
Pan-STARRS Magnitude Limits and Yields

- **Pan-STARRS (Wide??)**
 - Observation time = 5 months
 - Telescope Diameter = 1.8m
 - Efficiency = 0.5
 - Field of View = 7 deg2
 - Area Surveyed=12,000 deg2

- **Magnitude limits**
 - Sun-like stars = 12.5
 - M dwarfs = 17.1

- **Total Yields for S/N=20**
 - Sun-like stars = 48
 - M-dwarfs = 82
LSST Magnitude Limits and Yields

- **LSST**
 - Observation time = 10 years
 - Telescope Diameter = 6.5m
 - Efficiency = 0.5
 - Field of View = 9.6 deg²
 - Area Surveyed = 20,000 deg²
- **Magnitude limits**
 - Sun-like stars = 18.5
 - M dwarfs = 23.1
- **Total Yields for S/N=20**
 - Sun-like stars = 7700
 - M-dwarfs = 15500 (4000 to V~20)
A Worked Example
(with Cullen Blake, Guillermo Torres, Josh Bloom)
SDSS-II Transit Search

- **SDSS-II M dwarfs**
 - 300 deg2
 - Point sources
 - $i-z > 0.84$
 - $r < 21.2$ (5% precision)
 - M4 and later
 - r,i,z light curves for 19,000 M dwarfs
 - 10-30 observations in each band
 - *At most a few points in transit*

- **Transit Search**
 - Flux decreases of > 0.2 mag
 - All three bands
 - Jupiter radii companions for $R<0.2 R_\odot$
SDSS031824-010018

$g=20.818$

$r=19.290$

$i=17.681$

$z=16.792$

Depth > 0.3 mag

(Blake et al. 2007)
PAIRITEL Follow-Up

937 JHK measurements

(Blake et al. 2007)
LRIS Keck Spectra

(Blake et al. 2007)
Mass-Radius Constraints

(Blake et al. 2007)
Other DEB in SDSS-II

Estimate:
- Color-magnitude relations
- Mass-magnitude relation
- 30% binary fraction
- Duquennoy & Mayor q and P distributions.
- $i<19$
- Double lined, $K>30$ km/s
- Luminosity ratio >0.1
- 10% duty cycle
- Eclipse depth >10

(Blake et al. 2007)
Planets?

Targets:
• $i-z > 0.37$, $i < 19$
• 40,000 targets with $R < 0.3R_\odot$
• Depths > 10% for Jupiters

Planet Yield:
• 21 HJ+VHJ

Follow-up:
• $K > 30$ km/s
• $M\sin i > 95 M_J$ for $P < 3$ days
• IR spectroscopy?

Smaller Planets?
• Depths > 1% for Neptunes
• Calibrate SDDS to better than 1%?
The Coming Storm
An Embarrassment of Riches?

- LSST
 - Sun-like stars = 7700
 - M-dwarfs = 15500 (4000 to V~20)
- Calibrate photometry to ~0.1%?
- All fainter than V=16
- 10^5-10^6 false positives?
- Is there anything we can do with these planets?
Microlensing Planet Finder

- Monitor \(\approx 10^8 \) MS stars
- 9 months/year, 4 years
- 15 minute sampling
- \(S/N \approx 90 \) for 3 days
- \(\approx 30,000 \) Hot Jupiters
- \(S/N \approx P^{-1/3} \) \(\rightarrow \) Thousands of planets out to \(P \approx 2 \) years
- Single Transits to tens of AU
- All will have \(I > 20! \)
Statistical Analysis of Transit Candidates?

SWEEPS experience (Sahu et al. 2006)
• Statistical determination of the frequency of false positives
• Also model of Brown (2003)

More needs to be done:
• What are the uncertainties in these models?
• Variations in the binary fraction with environment?
• Do Kozai-created hierarchical triples (Fabrycky & Tremaine, Wu et al) change the results?
• Can we determine $f(M_*, r, P)$ robustly from a statistical analysis?

Can we rule out false positives without RV (for shallow transits)?
• How useful are planet detections without planet mass?