Secondary Eclipses of Transiting Planets

Drake Deming Planetary Systems Laboratory NASA's Goddard Space Flight Center

Spitzer:

Secondary eclipse photometry hot Jupiters a hot Neptune hot Earths? Occultation spectroscopy

Atmosphere Follow-up

Three different and complementary kinds of atmosphere measurements are possible with transiting planets. [Seager et al. 2005]

- Transit $[R_p/R_*]^2 \sim 10^{-2}$
 - Transit radius -> density
- 1) Emission spectra $T_p/T_*(R_p/R_*)^2 \sim 10^{-3}$
 - Emitting atmosphere τ ~1
 - Temperature and ∇T
- 2) Transmission spectra atm/R² ~10⁻⁴
 - Upper atmosphere
 - Exosphere (0.05-0.15)
- 3) Scattered light spectra p[R_p/a]²~10⁻⁵
 - Albedo, phase curve
 - Scattering atmosphere
 - (Polarization)

Secondary Eclipse Thermal Emission

Spitzer enables direct detection of IR light from the planets

eclipse depth ~ $(R_p/R_{star})^2(T_p/T_{star})$

yields T \sim 1100K

Planetary Eclipses Spitzer Space Telescope • IRAC • MIPS NASA / JPL-Caltech / D. Charbonneau (Harvard-Smithsonian CfA) ssc2005-09a D. Deming (Goddard Space Flight Center)

0.52 0.54 Phase

692.70

Spitzer photometry - 4 IRAC bands, + 16, 24 microns produces a broad-band spectrum

Barman: circulation is depth-dependent (stronger below ~ 0.1 bar) predicts H & K fluxes *below* the blue curve

Secondary eclipse of a hot Neptune (GJ436b) (see astro-ph/0707.2778)

Can Spitzer detect thermal emission from a super-Earth?

GJ 876d vs. 209458b	
d= 5 pc	d = 47 pc
T ~ 800K	T~1200K
R ~ 0.1 Rj	R = 1.35Rj
Fluxes will be comparable	
But no eclipse	

Spitzer spectra of two hot Jupiters:

Richardson et al. Nature 445, 892 Grillmair et al. ApJ 658, L115 Swain et al. astro-ph/0702593

Observe spectru

But... we actually derive the spectrum from Suthewavelength dependence of the secondary eclipse amplitude Observe stellar spectrum

Spitzer/IRS observations of HD 209458b:

2 eclipses, 6-hours each; 7/2005 60-sec exposures; 280/eclipse telescope nod at center of eclipse $\lambda/\Delta\lambda \sim 100$

S/N in combined light: ~100 per pixel per spectrum S/N ~ 100 sqrt(280)/sqrt(2) ~ 1200 star+planet ~ 4 on planet...! photon-limited

Results...

Grillmair et al. results for 189733b:

Candidate explanations for lack of water absorption:

Planet(s) have no water

Masked by high clouds

Temperature gradient perturbation

Water is seen in absorption during transit

Instrumental systematics?

Summary:

Spitzer secondary eclipse photometry attains high S/N, so we can....

measure broad-band spectra of hot Jupiters - learn about their composition, circulation extend the Spitzer measurements to: - hot Neptunes

- hot super-Earths
- exploit eclipses to do spectroscopy ($\lambda/\Delta\lambda \sim 100$)
 - emission features in HD 209458b
 - we do not see water absorption from 7 to 8 μ m
 - some inconsistencies remain

Many more Spitzer observations are underway in GO-4