Kepler: Transformation of a Great Science Idea to Mission Hardware

W. J. Borucki, NASA Ames & the Kepler Team
OUTLINE

1. Getting the mission selected

2. Overview of the Kepler Mission

3. Mission development

4. Analysis of the results

5. Community participation
1. GETTING THE MISSION SELECTED

Announcement of Opportunity

Proposals & reviews;

• Improve proposals & resubmit

Demonstrate: Important science, team capability, technical readiness, realism of cost

Concept Study Report & reviews & selection
• 30 responsive proposals rcvd; 25 for full missions
• Review panels & selection officials fund Phase A studies of 3 full missions and 2 “missions of opportunity”; $250K & 4 months to each full mission.
• Panels rank on science, technical readiness, team capability, education & public outreach plan, management plan, realism of cost plan
• Review panels for mission development
 – Independent Review Team → appointed by HQ or DPO
 – Standing Review Team → Same grp of individs appt by Center management
• Selection officials: Associate Administrator for Space Science
• HQ oversight
 – Colleen Hartman (Solar System Exploration Office)/Anne Kinney (Origins Program Office) appoints Program Executive & Program Scientist
 – Continuous oversight & support by Discovery Program Office (DPO)
• Strategic Goal 3: Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection human spaceflight program focus on exploration.

• Sub-goal 3D: Discover the origin, structure, evolution, and destiny of the universe, and search for Earth-like planets.
The Terrestrial Accretion Zone and The Habitable Zone for Various Stellar Types

- Planetary Orbital Period (Yr)
- Stellar Mass (M☉)
- Stellar Radii and Planetary Orbital Semi-Major Axis (A.U.)
- Continuously Habitable Zone (Kasting, Whitmire and Reynolds, 1993)

Solar System
Kepler: A Discovery Mission to Determine the Frequency of Earth-size Planets in the HZ
CAPABILITIES OF THE SCIENCE TEAM

William J. Borucki, Science PI, and David Koch, Deputy Science PI

<table>
<thead>
<tr>
<th>Stellar Occultations & High-Precision CCD Photometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Timothy Brown, Los Cumbres Obs.</td>
</tr>
<tr>
<td>• Edward Dunham, Lowell Obs.</td>
</tr>
<tr>
<td>• John Geary, SAO</td>
</tr>
<tr>
<td>• Ronald Gilliland, STScI</td>
</tr>
<tr>
<td>• Steve Howell, U. Ariz</td>
</tr>
<tr>
<td>• Jon M. Jenkins, SETI Institute</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Doppler Velocity Planet Searches</th>
</tr>
</thead>
<tbody>
<tr>
<td>• William Cochran, UTexas</td>
</tr>
<tr>
<td>• David Latham, SAO</td>
</tr>
<tr>
<td>• Geoff Marcy, U. Cal., Berkeley</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stellar Variability</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Gibor Basri, U. Cal., Berkeley</td>
</tr>
<tr>
<td>• Joergen Christensen-Dalsgaard, Denmark</td>
</tr>
<tr>
<td>• Andrea Dupree, SAO</td>
</tr>
<tr>
<td>• Dmiter Sasselov, Harvard</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theoretical Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Jack Lissauer, NASA Ames</td>
</tr>
<tr>
<td>• Alan Boss, Carneige Institute Wash.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mission Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Donald Brownlee, U. of Washington</td>
</tr>
<tr>
<td>• Nick Gautier, JPL</td>
</tr>
<tr>
<td>• Yoji Kondo, NASA GSGC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>• John Caldwell, York U.</td>
</tr>
<tr>
<td>• David Morrison, NASA Ames</td>
</tr>
<tr>
<td>• Tobias Owen, U of Hawaii</td>
</tr>
<tr>
<td>• Harold Reitsema, Ball Aerospace Co.</td>
</tr>
<tr>
<td>• Jill Tarter, SETI Institute</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Education and Public Outreach</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Edna DeVore, SETI Institute</td>
</tr>
<tr>
<td>• Alan Gould, Lawrence Hall of Science</td>
</tr>
</tbody>
</table>
Vulcan Project: Automated photometry & pipeline analysis of thousands of stars

- **OBJECTIVES:**
 - Monitor 10,000 stars continuously for periods of at least 6 weeks
 - Detect jovian-size planets in short period orbits
 - Use Doppler-velocity measurements to determine mass and density

- **TELESCOPE:**
 - Aperture: 10 cm
 - Focal length: 30 cm
 - Field of View: 7x 7 degrees
 - Detector: 4096x4096 CCD with 9 μ pixels
There are many confounding factors that influence the system noise and hence the detectability of transits. The purpose of the tests is to measure the effects of these factors, identify the optimal operating conditions under the influence of each factor and show that when all of the effects are taken together Earth-size transits can be reliably observed. The Test Facility incorporates the ability to measure the following effects:

1. Spacecraft jitter: Motion to 500 millipixels each axis (expect ±3 millipixels)
2. Dynamic range: Target stars $m_v=9$ to 14. Background stars to $m_v=19$
3. Double stars: Five magnitudes fainter at 0.5 to 5 FWHM separation
4. Smearing: Shutterless readout with other stars in the same column
5. Field rotation: Star field moved to different portions of CCD
6. Temperature: CCD operating range from -60°C to -40°C
7. Focus change: Effects of focus variations on noise, psf and plate scale
8. Optimal aperture: Operate from 3 to 11 pixel (binned) photometric aperture
9. Thermal effects: Various effects, such as, differential expansion
10. Bright stars: Effects of blooming caused by $m_v=4$ star
11. Cosmic rays: Effects of cosmic-ray hits on the CCD

Note: A comprehensive discussion was presented by David Koch on Tuesday.
The program is led by Alan Gould, Director of the Lawrence Hall of Science Planetarium, Berkeley, CA, and Edna DeVore, Director of Educational Programs at the SETI Institute, Mt. View, CA. The two Co-Is have a budget of approximately $5 M.

Great Exploration in Math and Science (GEMS) produces, tests, and disseminates a standards based teacher guide for middle school through the national GEMS network of more than 50 centers and reaches about 2 million students. FOSS (Full Option Science System) is a full length kit-base course for teachers in rural districts. Planetarium shows reach about 24 M people in the US. Alan operates the website that you might have used in becoming familiar with the Kepler Mission.
The *Kepler* Team is committed to providing small businesses (SB), small disadvantaged businesses (SDB), women-owned small business (WOSB) and veteran-owned small business (VOSB) concerns, historically black colleges and universities (HBCU) and other minority institutions (OMI), and HUBZone business concerns with the maximum practicable opportunities to participate in acquisitions. The *Kepler* Team’s goal for SBD, including WOSB, VOSB, HBCU, and OMI, subcontracting is 8% of the total mission cost excluding the booster and Deep Space Network costs.
2. TIMELINES & OVERVIEW OF THE KEPLER MISSION

• Development Timeline
• Science Objectives
 – Implications of results
• Instrument
• Spacecraft, booster, orbit
• Organizations & responsibilities
• 2000; Kepler selected as one of three mission concepts
 – Write Concept Study Report (CSR), Launch in 2005
 – CSR review, Site visit review at BATC, AA presentation
• 2001; Kepler selected as Discovery Mission #10
 – Funding limitations delay launch to 2006
 – Procurement of long-lead items begins & team is maintained
• 2002; HQ directs addition of JPL to do mission management
• 2003; Passed Systems Requirements Review
• 2004; Passed Preliminary Design & Confirmation Reviews
• 2005; Cost over-runs on other missions require a $35M decrease in FY’05 funding for Kepler.
 – Launch delayed to 2007
• 2006; Trade studies conducted to reduce complexity and cost of mission.
 – Articulated antenna removed with small loss to science product
 – Critical Design Review passed
 – Replan accepted by HQ. Launch delayed to Nov 2008.
• 2007; Over budget & behind schedule → replan
 – Development team reduced
 – Testing reduced
 – Mission duration decreased from 4 yr to 3.5 yr
 – Launch delayed until Feb 2009
 – Mission changes from PI led Discovery mission to “Strategic Mission”
SCIENTIFIC OBJECTIVES

Explore the diversity of extrasolar planetary systems & determine the:

• Frequency of terrestrial and larger planets in or near the habitable zone of a wide variety of stellar spectral types

• Distribution of sizes and semi-major axes of planets

• If there are additional members of each planetary system using other techniques

• Distributions of semi-major axis, albedo, size, and density of short-period giant planets

• Percentage and orbital distribution of planets orbiting multiple star systems

• Association of discovery results with stellar characteristics
• Several hundred terrestrial planets are expected in the HZ if they are common. A null result would mean Earths in the HZ are rare in our galaxy.

• Several thousand Earth-size planets should be detected outside the HZ. The actual occurrence frequency will dramatically affect theories of planet formation.
VALIDATION OF DISCOVERIES

- SNR > 7 to rule out statistical fluctuations
- Three or more transits to confirm orbital characteristics
- Light curve depth, shape, and duration
- Image subtraction to identify signals from background stars
- Radial velocity
 Medium resolution to rule out stellar companions
 High resolution to measure mass of giant planets
- High spatial resolution to identify extremely close bgkd stars
- Color change during transit?
HARPS PLANET SEARCH PROGRAM

- Geneva Observatory
- Physikalisches Institut, Bern
- Haute-Provence Observatory
- Service d’Aéronomie, Paris
- ESO 1 m/s

ESO 3.6m La Silla
A Search for Habitable Planets

Use transit photometry to detect Earth-size planets
- 0.95 meter aperture provides enough photons
- Observe for several years to detect transit patterns
- Monitor a single FOV continuously to avoid missing transits
- Use heliocentric orbit

Get statistically valid results by monitoring 100,000 stars
- Wide FOV telescope
- Large array of CCD detectors

KEPLER: A Wide FOV Photometer that Monitors 100,000 Stars for 3.5 years with Enough Precision to Find Earth-size Planets in the HZ
Single science instrument:

Photometer: 0.95m aperture, 42 CCDs, 420-890nm, passive cooling, focusable primary

FOV: 100 sq deg. centered & fixed at 19h23m, 44° 30’

Spacecraft provides power, guidance, telecommunications, and fault protection.

Launch Vehicle: Delta 2925-10L

Launch date: Feb. 2009

Operational life: 3.5 years with expendables for 6 years
Photometer Assembly Is Nearing Completion

- Dust Cover
- Sunshade
- Thermal Radiator
- Upper Housing
- Photometer Flight Harness
- Lower Housing
- Schmidt Corrector Assembly
- Focal Plane Array Assy
- Detector Modules
- Focus Mechanism Assy (3X)
- Aft Bulkhead
- Primary Mirror Assembly
- Photometer Assembly
- Aft Bulkhead
- Upper Housing
- Detector Modules
- Focal Plane Array Assy
- Schmidt Corrector Assembly
- Focus Mechanism Assy (3X)
- Lower Housing
- Thermal Radiator
- Sunshade
- Dust Cover

NASA

Kepler
Nearly all Spacecraft components are in house at BATC
LAUNCH VEHICLE

Launch Vehicle: Delta II 2925- 10L
Fairing: 10 ft diameter, 30 ft length
Fairing Access Doors: 3 standard
Payload Attach Fitting: 3712A
Electrical Connectors: 2-37 pin std
3rd Stage with NCS:

Mission Information:

Launch Date: Feb 2009
Injection Orbit: Heliocentric, earth trailing
Launch Energy: C3 = 0.6 km2/s2
KEPLER IS IN AN EARTH-TRAILING ORBIT
3. MISSION DEVELOPMENT

- Phases A/B/C/D/E

- Phase A; define all requirements; Requirements Review
 - Site visit and surprise questions (telecom req.)

- Phase B; preliminary design; Prel. Design Rev.
 - Requirements flowdown; SRD, MRD,
 - Organization chart & list of documents
 - Mass, power, volume, science capability

- Phase C; Construction; Critical Design Rev.

- Phase D; Assembly, Test, Launch, Operations, & Commissioning

- Phase E; On-orbit science data acquisition
Requirements Documentation

- **MDRA**
 - Level 0 ("contract with HQ"; mission nominal & minimum success criteria)

- **SRD**
 - Level 1

- **MRD**
 - Level 2
 - Level 3

- **KMS Rqmts**
- **FS rqmts**
- **LS rqmts**
- **GS rqmts**

- **MRD**
 - Level 2

- **KMS Rqmts**
 - Level 1

- **FS Spec**
 - Level 0

- **LSRD**
 - Level 2.5

- **GSRD/SORD**
 - Level 3

- **GSRD**
 - Level 0

- **SORD**
 - Level 1

- **Specific Requirements**
 - Level 2

- **Photometer Spec**
- **S/C Spec**

- **Generic Policy Docs**
- **Project Plan**
- **Project Policies**
- NASA planetary protection rqmts
- NASA program mgmt policies
- JPL Design Principles

- **ARC**
- **STScI**
- **JPL (PSE)**
- **KSC**
- **JPL (DSMS)**
- **SAO**
- **BATC**
- **LHS**
- **GSFC**

- **PSP/DAP rqmts**
- **EPO rqmts**

- **Level 2.5**

- **Level 3**

- **DSMS rqmts**
- **MOC rqmts**
- **SOC rqmts**
- **DMC rqmts**
- **CO rqmts**

- **DSMS agreement**
- **MOC spec**
- **SOC spec**
- **DMC spec**
- **CO spec**

* performance, functional, verif, & cal rqmts
**B-spec; "rqmts doc"…includes MA/Env
Baseline Design; Driving Requirements

- Combined Differential Photometric Precision; 20 ppm for 12th mag stars & 6.5 hr transit duration
 - 17 ppm Raw Photometric Precision = instrument + shot noise
 - Assumes a 10 ppm stellar variability at time scale of transits
- Mission life (after 30 day commissioning); 3.5 yr
- Number of targets; 170,000 stars during yr 1 (103,000 for yrs 2-3.5)
- Minimize false alarms (statistical & astrophysical)
- Produce a statistically valid null result
- Data completeness; 91%
- Data contiguity; less than or equal to 50 breaks (> 2 hr gap) over 3.5 yrs
- Process data to detect terrestrial planets (transits & reflected light)
- Orbit; Heliocentric; Earth-trailing (for continuous viewing & stability)
- Launch on 3-stage Delta II 2925-10L
EXAMPLE OF A DEVELOPMENT PROBLEM

Issue: SDST Ka-band exciter failed on MRO

- Risks to Kepler
 - Loss of mission
 - Total Ka-band failure could prevent meeting science floor
 - Ka-band failure could propagate to rest of SDST (X-band)
 - Science Degradation
 - w/o more DSN practice tracking Ka-band, operability issues could impact completeness
 - 2 tiger-teams aggressively worked over the summer (JPL SDST, Kepler Ka-band)
 - Major thrusts
 - SDST root-cause investigation & reliability improvements
 - Ensuring fault containment
 - Trading options for X-band functional redundancy (protect minimum mission)
 - Re-assessing DSN completeness and tracking robustness

- Expected outcome
 - As a minimum, replace stressed TGA8104 & improve heat-sinking for one SDST
 - Will decide by Nov 1 whether to also modify the 2nd unit and/or proceed with additional improvements to one or more units
 - Updates to fault protection & trend analysis (together with heat sinking) mitigates the risk to X-band
 - Will get more DSN Ka-band practice tracks (carrier only) with Cassini
 - Analysis indicates we can preserve minimum mission with X-LGA & additional DSN time even if both Ka-band strings fail (details in backup)
4. ANALYSIS OF THE RESULTS

• Science data flow

• Science team responsibilities & activities

• Stellar Classification Program,

• Follow up Observation Program,

• Synthesis & Publication
DATA FLOW

Flight Segment (FS)
- acquire pixel data for SOC-defined “postage-stamp” apertures (avg 32 pixels per star) at 30 minute & 1 minute cadence + collateral pixel data to support calibration
- X-band pass every 3 – 4.5 days (6 hours)
 - real-time engineering data & playback from NVM
 - uplink commands
- Ka-band & X-band pass every 30 days (24 hours)
 - Playback stored science & engineering data from SSR

Ground Segment (GS)

DSN Uplink JPL DSMS
- Mission Operations Center (MOC)
- LASP - Boulder
- Data quantity, completeness, continuity checks
- JPL DSMS DSN Downlink

-flight Planning Center (FPC)
- Flight Operations Management, Uplink Validation, & Mission Planning
- Engineering Trend Analysis, Debug, Anomaly Resolution

Science Operations Center (SOC)
- ARC-Mountain View
- Science Office (SO), Mission Management Office (MMO)

Science Team Interpretation
- Photometric performance analysis
- Pipeline data processing: photometry (light-curves), error redux, transit search, reflected light analysis, etc

Transit candidates
- Data Validation & False-Positive Rejection

Publishable results
- Target selection & definition, photometer parameters

Stellar Classification Program (SCP) Co-Investigators
- Follow-up Observation Program (FOP) Co-Investigators

Data Management Center (DMC)
- STScI-Baltimore
- Level 3 data
- Pipeline data processing: decompression, calibration & archival (L2 & L3)

- Level 2 data
- Level 1 data (compressed)
Kepler Input Catalog

- Used to select optimum targets

- Includes all known stars in Kepler FOV
 ~ 20 million stars (USNO-B)

- Photometry
 - 2MASS JHK + SDSS griz + D51
 ~ 2 million stars down to K~14.5 mag

- Astrophysical characteristics
 - Teff, log(g), [Fe/H], reddening; Mass, Radius
 - Radial and rotational velocities
Hectochelle on the MMT
- 240 fibers, 8 km/s resolution
- Single order: RV31 is 5150-5300A
SCIENCE COMMUNITY PARTICIPATION

• Participating Scientist Program (PSP)
 – The PSP funds investigators whose research program is directly concerned with the detection, characterization, or understanding of extrasolar planets. Such research programs complement those developed by the PI and Co-Is.

• Guest Observer Program
 – The GOP will function similar to facilities instrument such as HST. Approximately 3% of the downlink bandwidth will be available for astrophysical investigations by the GO. Observations of up to 3000 stars at the 30 minute cadence can be requested and/or 25 stars at a 1 minute cadence. Any type of object in the Kepler FOV will be observed upon request by a successful proposer.

• Astrophysics Data Program
 – This program funds investigators who wish to data mine the Kepler observations.