Operational Experiences with Vulcan

N. Batalha San Jose State University NASA Ames Research Center

Vulcan, Roman god of fire

The Camera

An f/2.8 Canon lens feeds a 4096x4096 Kodak CCD

Weather Station

Dome & outside air temperature, pressure, wind speed, humidity, precipitation, cloud cover (via IR sensor)

Crocker Dome

Data Transfer

2.4 GHz Solectek MP1100Ewireless bridge routers yield500 kbytes per second.

Ames to Crocker dome: ~25 miles

The Dome Leak Diverter

Good thing it never snows in California...

4

┍

١

Focus Stability

FWHM correlated with both air and CCD Temperature

Things that can go wrong

- Mice chew cables
- Mice nest in warm equipment
- Motors fail
- Circuit breakers blow
- Power fails
- Domes leak
- Hard drives fill up
- Memory leaks cause glitches
- Air temperature is not stable

What can help

- Nightly diagnostics
- Thorough observing logs
- Web camera
- Internet-controlled dome light
- Internet-controlled switches
- CRON scripts to archive data
- Linux/Unix wherever possible
- Absolute encoders on drive axes
- Thermal control heaters

The Elephant in the Closet

Number of Expected Detections

$N = P_d x P_p x P_a x P_3 x Nstars$

- P_d = probability star is MS dwarf (50%)
- P_p = probability has short period planet (1%)
- P_a = probability of alignment (10%)
- P_3 = probability of observing 3 transits (60-80%)

Assume milli-mag precision is achieved for about 3,000 stars per field. This translates to one detection per field.

Does not imply 100% detectability probability for P < 2 days

Alignment probability also decreases with increasing period.

Probability depends on stellar characteristics.

Modeled versus Observed Stellar Populations

http://bison.obs-besancon.fr/modele Robin, Reyle, Derriere, Picaud, 2003, AA 409 523

Note: blue and green traces applicable to one specific star

RV Period Distribution

Does not consider binarity or dilution effects due to crowding.

More cameras, more fields, more telescopes...

$$N_{detections} = \sum_{i} P_{i} =$$

One camera, one field, one telescope:

4.6 (flat period distr)2.9 (RV period distr)

One camera, two fields, one telescope:

Per field:

4.3 (flat period distr)2.6 (RV period distr)

Total:

8.6 (flat period distr) 5.2 (RV period distr)

Persistence, Captain, is everything.