Suzanne Aigrain
on behalf of the CoRoT exoplanet science team
Why space?

- Atmosphere limits precision photometry from the ground
 - Scintillation limit ~2 mmag
- Representative transit depths for Sun-like star
 - Jupiter: 10 mmag
 - Neptune: 1.3 mmag
 - Earth: 0.1 mmag
- Weather and daytime limit temporal coverage from the ground
- Many sources of noise transit timescales removed
 - colour dependent differential extinction, seeing, etc...
The satellite

- PI: Annie Baglin, LESIA, Meudon
- CNES PROTEUS bus
- 27cm aperture telescope
- Soyuz II-1b launcher from Baikonour
- Polar orbit
- 2.5 year minimum lifetime
Payload

27 cm focal box

focal box

DL: Dioptric Lens
MA: CCD Memory Area
IA: CCD Image Area
T: Temperature probe

Temperature Regulation

INSULATING
SHIELDING
Focal plane

- Sismo field
 - 5 windows / CCD
 - $5.7 < m_V < 9.5$
 - 32s sampling (1s on request)
 - frame transfer mode
 - used for astrometry

2.8°
Pointing stability

x-coord of stellar image barycenter

RMS stability:
0.12 pixel in x
0.15 pixel in y
~0.3 arcsec

vibrations due to Earth eclipse ingress and egress
• Exo field
 • up to 6000 LCs / CCD
 • $11.5 < m_V < 16$
 • 512s sampling (32s for 500 objects / CCD)
 • 3 colours for ~ 4500 objects / CCD with $m_V < 15$
 • some small background windows
 • up to 40 10x15 pixel windows
 • on-board aperture photometry using mask selected from 256 templates based on one initial long integration image
Exo field

- Exo field
 - up to 6000 LCs / CCD
 - $11.5 < m_V < 16$
 - 512s sampling (32s for 500 objects / CCD)
 - 3 colours for ~ 4500 objects / CCD with $m_V < 15$
 - some small background windows
 - up to 40 10x15 pixel windows
 - on-board aperture photometry using mask selected form 256 templates based on one initial long integration image
Observing strategy

- **Sequence:**
 - ~1 month commissioning
 - 1 initial run (early science, ~50d)
 - then 5 x (150d long run + 21d short run)
 - rotate satellite every 6 months
 - 1st long run Galactic centre in March 2007

- **Visibility zone**
 - sun angle constraints imply 2 ‘CoRoT eyes’
 - 10° diameter, small drift over 2.5 yr lifetime
 - intersection of ecliptic & Galactic planes
 - field selection = compromise

<table>
<thead>
<tr>
<th>Field</th>
<th>Dur. (d)</th>
<th>RA</th>
<th>Dec</th>
<th>Rot* (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR1</td>
<td>~60</td>
<td>06:50:25</td>
<td>-01:42:00</td>
<td>+14.96</td>
</tr>
<tr>
<td>LRc1</td>
<td>150</td>
<td>19:23:28.8</td>
<td>+00:28:48</td>
<td>+19.0</td>
</tr>
<tr>
<td>LRa1</td>
<td>150</td>
<td>06:46:48.0</td>
<td>-00:11:24</td>
<td>+7.3</td>
</tr>
</tbody>
</table>

*N-S direction: Rot = -5° in centre, +5° in anticentre
South Atlantic Anomaly

SAA shifted ~8° NW compared to previous AP8min model (L. Pinheiro)
Example charged particle deposit on Exo CCD

(F. Karioty)
Straylight background

Lower than expected
Implies baffle performance better than 10^{-12}

Folded on orbital period

Earth eclipse ingress & egress
Duty cycle

Example background light curve

Source of gaps:
SAA (6%)
other random events (1-2%)
→ Duty cycle 92%

Hot pixels 10x more frequent than expected
Exoplanet noise budget

- Nominal noise budget
 - white noise
 - readout, background, jitter
 - see plot
 - orbital period (6174s)
 - jitter, temperature, residual straylight
 - 120 ppm
- Stellar variability
 - few tens of ppm over transit timescale
- Correlated noise?
 - Blind test light curves contain 0.5 mmag red noise after detrending
RAW performance in the exo field

Mv ~15.4
RMS = 1170 ppm
Photon noise = 1080 ppm

Mv ~12.3
RMS = 400 ppm
photon noise = 400 ppm

Already close to specification despite incomplete processing
Stellar micro-variability

- Rotational modulation & intrinsic evolution of surface structures (spots, faculae, granules)
- Roughly 1/f noise spectrum
- Very ill characterised in stars other than the Sun
- Attempts at predicting micro-variability for other stars (Aigrain, Favata & Gilmore 2004, Lanza et al. 2005)
- Could be a serious impediment to terrestrial transit detection from space
- Temporal signature different from transits
Example light curves from the seismo field
Blind test I - detection

- 999 simulated light curves
 - White light only
 - Diverse signals (rather than representative)
 - Pessimistic instrumental noise + variability
 - Content known only to “game master”
- 5 teams attempted detection
 - Fourier domain filtering successfully curbs most stellar variability
 - Best detection with BLS or similar
 - No ability to distinguish background EBs

Moutou et al. (2006)
Blind test 2 - characterisation

- 236 simulated light curves
 - 3 colours
 - Include contaminant info
 - All contain a signal
- 8 teams attempted detection & characterisation
 - Simplistic colour or transit duration tests dangerous
 - Checks for 2ary eclipses & ellipsoidal variation robust
 - Many BEBs can be identified from LC + contaminant information alone
 - Toughest type of contaminant to identify is low mass companion - easy RV

Best fit with EBAS (Tamuz et al 2006)
Planet on primary target

EB on contaminant
Follow-up

- Light curve filtering & transit detection
- Detailed LC analysis in conjunction with EXODAT database:
 - deep UVRIJHK catalog
 - SpT estimate of CoRoT targets
 - contamination estimate
- Photometric follow-up
 - which star in the PSF varies?
- RV follow-up (HARPS)
 - companion mass
- Spectroscopy of parent star
 - stellar parameters

Real time candidate prioritisation & coordination of follow-up effort

COROT is well matched to current RV facilities
Expected detections

- CoRoTLux simulator (Gillot, Fressin et al)
 - See talk by F. Fressin tomorrow for details
- Results over entire mission
 - 80 Hot Jupiters (15% P>10 days; nearly as many in short runs as long)
 - 15-30 Hot Neptunes (3-4 R\(\oplus\); almost all in short runs)
 - Possibly a few terrestrial planets (~2 R\(\oplus\))
 - About 100 candidates per run, 50 of which survive to follow-up stage
- But...
 - Assumes low-mass planets more abundant than giants
 - More astrophysical false alarms if shallower transits accepted
Initial run results

- Initial run: 60 days in Feb - March 2007
- Several transit/eclipse candidates identified by automatic ‘alarm mode’ software at LAM based on partial datasets from initial run and first long run
- Spectroscopic and photometric follow-up tests in April and July

CoRoT-exo-1b
1.5 d period
1.5-1.8 R\(_J\)
\~1.3M\(_J\)

Spectra from SOPHIE@OHP, ground-based photometric confirmation from WISE 1m and BEST
More & better spectra needed to improve stellar parameters and mass ratio estimate
more candidate images
Ultra precise Hot Jupiter light curves

HD209458b with HST (Brown et al. 2000)

- Ingress/egress shape: limits on planet oblateness and the presence of moons or rings
- Transit timing: limits on the presence of other planets in the system (Agol et al. 2005)
- Centre of transit shape: image strip of stellar surface (limb-darkening, spots)

Large ground-based telescopes would improve on CoRoT for fainter planets
Transit timing

CoRoT-exo-1b transits observed 40 times

Individual transits can be timed to ~ 30-40s

Would easily detect non-transiting Earth-mass planets in a variety of outer orbits

But... extremely sensitive to red noise - need fully processed data
The mass-radius relation

Legend:
- solar system
- discovered via RV
- bright (V<12) star
- faint (V~17) star

Data from obswww.unige.ch/~pont/TRANSITS.htm

CoRoT-exo-1b

GJ456b

gaseous-giant transition
Solid exoplanets

- Will we be able to differentiate between planet mostly made of
 - H/He
 - H$_2$O
 - MgSiO$_3$
 - Fe
 - a mixture?
- Simple calculation - hydrostatic equilibrium + EoS - gives mass-radius relation for hypothetical planets
Solid exoplanets

Seager, Kuchner, Hier-Majumder, Millitzer (in prep.)

7% error bars on mass and radius

Will be able to tell bulk composition but not much more
CoRoT is working extremely well
- all systems nominal, some significantly better
- should be sensitive to planets barely larger than the Earth

First science results - still under analysis
- a large transiting very hot jupiter, several candidates, many EBs
- clear detection of oscillations in Sun-like star, Scuti, etc...
- dozens of variables of all types

Timeline:
- First data release to co-Is later in 2007
- Data becomes public 1 year after release to Co-Is
- First long run started end may
- Follow-up in late summer for alarm mode candidates, spring / summer 2008 for the rest

More info:
http://corot.oamp.fr/

The CoRoT Book
ESA-SP 1306 (in press),
eds. M. Fridlund, A. Baglin,
L. Conroy and J. Lochard