Extrasolar planets

Detection with astrometry

The VLT Interferometer (schematic)

20 79. Photo 14b/00 (24 May 2000)

© Suropean Southern Observatory

D. Queloz, Observatoire de l'Université de Genève

Extrasolars planets key themes

planetary formation

- from orbital characteristics
- from mass distribution
- from host star characteristics

physics of planets

- from atmospheric features
- from planet radius
- from planet photometry

Astrometry : required precision

$$\alpha[mas] \approx \frac{M_p[Jup]}{D[pc]} \left(\frac{P[yr]}{M_{\star}[Sun]}\right)^{2/3}$$

Binary stars : A M6V dwarf (100 M_{jup}) orbiting a G dwarf @ 20pc with P=1yr $\alpha = 5mas$

Extrasolar planet :

A Jupiter mass planet orbiting a G dwarf @ 20pc with P=1yr $\alpha = 50 \mu arcsec$

Astrometric motion equations

$$\begin{split} \xi &= \alpha \cos\left(\delta\right) + \mu_{\alpha} \cos\left(\delta\right) & (t - t_0) + R(t) P_{\alpha}(t)\pi + Y_{orb} \\ \eta &= \delta & +\mu_{\delta} & (t - t_0) + R(t) P_{\delta}(t)\pi + X_{orb} \end{split}$$

Below the milli-arcsec precision

Main ground limitations:

The atmosphere and its turbulence

Solution : Very Narrow angle astrometry

- small $\Delta \theta$ well within the isoplanetic angle (<30arcsec)
- Small $\Delta \theta =>$ small refraction angles
- IR observations=> small refraction angles and slower atmospheric effects
- Interferometers with long baselines are more efficient

Astrometry with an Interferometer

$\triangle OPD = \triangle S \cdot B + \phi + OPD_{turb} + OPD_{int}$

20 μ arcsec = 1•10⁻¹⁰ rad Δ S•B is 10 nm with 100m

OPD_{turb} averages to zero but it needs integration time...

OPD_{int} needs to be measured

Aerial View of Paranal Observing Platform with VLTI Light Paths

ESO PR Photo 10f/01 (18 March 2001)

© European Southern Observatory

Extra-Solar Planet search with PRIma (ESPRI)

Carry out extra-solar planet searches on nearby stars, using accurate astrometric measurements. Start of the program in Oct 2008

- Mass measurements of known systems
- Multiple systems inclinations
- Search on "other stars not RV suitable" o active stars o massive stars
- Search on "nearby stars"

sin i =0.5

sin i =0.99

Planet Mass Distribution

Extra-Solar Planet search with PRIma (ESPRI)

Carry out extra-solar planet searches on nearby stars, using accurate astrometric measurements. Start of the program in Oct 2008

- Mass measurements of known systems
- Multiple systems inclinations
- Search on "other stars not RV suitable" o active stars o massive stars
- Search on "nearby stars"

Multi-planetary systems: HD202206

Extra-Solar Planet search with PRIma (ESPRI)

Carry out extra-solar planet searches on nearby stars, using accurate astrometric measurements. Start of the program in Oct 2008

- Mass measurements of known systems
- Multiple systems inclinations
- Search on "other stars not RV suitable" o active stars o massive stars
- Search on "nearby stars"

 $\sqrt{60^2 + 40^2}/\sqrt{11} \approx 20 \mu arcsec$

About 5000 planets expected on stars inside 200 pc with 10 > my >15

A statistical census of planet properties

mass (Jupiter mass)

SIM planet survey

Scenario	Target Brightness	Observation Period	Requirement
Planet-Finding	6 mag	Single visit, 1000 s/visit	1.12 µas
Legacy Narrow Angle	10 mag	Single visit, 1000 s/visit	1.48 µas
Narrow Angle (faint)	13 mag	Single visit, 1000 s/visit	3.24 µas
Grid Stars	10.6 mag	5 year mission accuracy	3.47 µas
Legacy Wide Angle	18 mag	5 year mission accuracy	5.38 µas
Wide Angle	19 mag	Single visit, 2000 s	41 µas
2000 Decadal Review			Floor
Narrow Angle			3 µas
Wide Angle			10 µas

EPIcS

Wide survey 2000 stars at 5 µarcsec

Narrow angle survey (1 µarcsec): *ultra deep* 60 stars, 200 meas./star *deep survey* 120 stars, 100 meas./star

