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Simple geometrical stellar modelsSimple geometrical stellar models

• uniform disk

• gaussian disk

• disk with limb-darkening

• stellar disk + spot
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A very classical technique that consists in searching for the model that best 
reproduces the data and in constraining its parameters.

The most common method is the χ2 method (maximum likelyhood for 
gaussian random variables). 

Example in the case of the uniform disk model:

where M is the model with a single parameter, the star diameter ØUD. The Vi
2

are the measured squared visibilities and the σi the associated errors. The Si are 
the spatial frequencies.

Model fittingModel fitting
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The method consists in searching for the minimum χ2 to find the most 
probable parameters. 

If the model is an exact representation of the object and if the error bars are 
correctly estimated then the average value of the χ2 at minimum is 1.

N-p (p=1 here) is the number of degrees of freedom of the χ2.

Model fittingModel fitting

Number of parameters
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A unique solution ?A unique solution ?

If the χ2 is convex then the solution is unique. It is the case if the model is linear wrt
to the parameters.

Most often the model is not linear local minima and multiple possible solutions

Caveat: the χ2 surface is a realization of a random variable (the χ2 !). If several
solutions have close χ2 values then the true solution may not have the smaller χ2

and may appear as a secondary minimum statistics with small numbers.

χ2

parameter spacesolution
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The χ2 statistics allow to determine confidence intervals for the model 
parameters.

The error bars are computed by varying the χ2 by 1/(N-p) around its minimum 
value. This yields the equivalent of the « 1σ » error for the gaussian
distribution.

(the value of the confidence interval is not 63.7%, it depends on the number of 

measurements and on the number of parameters).

In the case of the one parameter model:

Model fittingModel fitting

χ 2 ØUD + σ ØUD( )= χmin
2 +1/ N − p( )
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When available, closure phases can be included in the χ2

Minimizing this  χ2 is called parametric imaging.

If the model is a set of independent pixels then this is how images can be
reconstructed.

The relative weight between closure phases and visibilities can be adjusted
(not a real χ2 anymore)

Use of closure phasesUse of closure phases
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First image in optical interferometry
The binary star Capella seen by COAST

First image in optical interferometry
The binary star Capella seen by COAST

(Baldwin et al. 1996)
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Parameter degeneracyParameter degeneracy

Tlayer
Rlayer
τ(λ)

T*
R*

molecular
layer

photosphere
Trough of minima

K

Visibilities are sensitive to the relative ratios of intensity between the photosphere
and the layer which is a combination of optical depth and temperature.

The degeneracy is broken by forcing the model to comply with the flux of the
source
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Examples of selection criteria:
- reject data for which the instrument was not stable (varying transfer function)
- reject data for which statistical distributions of uncalibated V2 are not gaussian
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Example of MIDI data: BetelgeuseExample of MIDI data: Betelgeuse

Huge problem with this one

Same selection applied to the star data

Probable issue with error bar estimates

Background issue

Seeing issue
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What to do if error bars are not well estimatedWhat to do if error bars are not well estimated
Error bars are first estimated for each series of scan (histogram method

and propagation of errors).

Visibilities are then binned by spatial frequencies -> several visibility
estimates per bin.

The consistency of visibility sets per bin is checked:

If χ2>1 then the variance of the estimated average is multiplied by χ2 to 
make the scattered visibility estimates consistent (probably one of the
best among the worst methods !).
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Result for BetelgeuseResult for Betelgeuse
Perrin et al. (≥2006)
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Caveat: model and visibility estimator (wide band)Caveat: model and visibility estimator (wide band)

The model visibility MUST be computed with the same visibility
estimator as for the measured visibilities

If not the case then biases may occur in the interpretation of the data

Example: wide-band visibility estimators

˜ V 2 ∝ V 2 σ( )B2 σ( )
band
∫ dσ

˜ V 2 ∝ V σ( )B σ( )
band
∫ dσ

2

Estimator # 2

B(σ) = source 
brightness spectral 
distribution

Estimator # 1

Fourier

Transform

B(σ)V(σ)

Estimator # 1
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Example with the uniform disk visibility function
in the K band

Example with the uniform disk visibility function
in the K band

Wide band vs. Monochromatic estimator

˜ V 2 ∝ V 2 σ( )B2 σ( )
band
∫ dσ

+

- +
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Example with the uniform disk visibility function
in the K band

Example with the uniform disk visibility function
in the K band

Wide band vs. Monochromatic estimator

(44 mas source)

Perrin &
 R

idgw
ay (2005)
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Errors and biases on fringe contrasts
measurements

Errors and biases on fringe contrasts
measurements

Wide band vs. Monochromatic estimator

Perrin et al. (2004)
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Correlated noise and relative interferometryCorrelated noise and relative interferometry

If different sets of visibilities have calibrators in common then different
measurements have errors in common

When fitting data, measurements cannot be assumed independent

Lower accuracy on fitted parameters (correlated errors do not average down to 
zero)

However, systematic errors can be disentangled from statistical errors to improve
accuracy on some relative parameters
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Correlated noiseCorrelated noise

A single calibrator was used
Only 4% of the noise is uncorrelated

Perrin et al. (2003)

SW Vir
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Correlated noise and relative interferometryCorrelated noise and relative interferometry
Calibrator diameter noise

Other noises (measurement noise)

Absolute visibilities are consistent with a constant value:
- the absolute diameter (e.g.) can be determined whose accuracy is limited by that of 

the calibrator

The periodic modulation is compatible with relative visibilities
- relative diameter (e.g.) variation can be determined

Rather than using several calibrators, use of a single stable calibrator may be a good
strategy to detect tiny variations

V

t
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Data modelling: how to choose a model ?Data modelling: how to choose a model ?

Two cases
1. The shape of the source is known

select a model that represents most of the visibility contests and put some
effort in modelling the remaining bits

Example: Betelgeuse

2. The source is not known at this resolution scale and there is no good a priori
either it is possible to directly reconstruct a high fidelity image (radio case)
or, try to analyse the visibilities with simple visibility models to find good
hints on the nature of the object and then build a more complex model

Example: NGC 1068
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Facts about BetelgeuseFacts about Betelgeuse

• Supergiant star of type M1.5

• Well-known diameter: from 50 mas in the UV to 44 mas in the NIR

• It has a dust shell (size ~ 1’’ measured by the ISI interferometer at 11 
µm)

• It is surrounded by a MOLsphere (NIR interferometry + ISI + 
spectroscopy)

• Spots have been detected at its surface in the visible and UV

• It has a limb-darkened disk
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The asymmetries of BetelgeuseThe asymmetries of Betelgeuse

Wilson, Dhillon & Haniff
(1997, 700 nm, WHT)

700 nm 905 nm 1290 nm

Young et al. (2000, COAST)

Gilliland & Dupree (1995, HST)

UV
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K band measurementK band measurement

Perrin et al. (2004)



2006 MSW                                                        33G. Perrin -- Data modelling and interpretation July 28, 2006

1.65 µm band data from IOTA1.65 µm band data from IOTA

Green: UD model
Black: LD disk
Blue: LD disk + 5% total flux environment

Haubois et al. (≥2006)

This is the baseline model
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Parametric imagingParametric imaging

0.5% flux positive N-W unresolved spot

Or

0.5% flux negative S-E unresolved spot
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Direct image reconstructionDirect image reconstruction

QuickTime™ et un
décompresseur TIFF (LZW)

sont requis pour visionner cette image.

Point source response

QuickTime™ et un
décompresseur TIFF (LZW)

sont requis pour visionner cette image.

Reconstructed image

(S. Meimon)
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Parametric imaging and image reconstructionParametric imaging and image reconstruction

Betelgeuse is a simple example (although finding this low flux spot has 
been difficult)

Direct imaging will be useful for complex object to get a hint of what they
look like (example: jets in YSOs, AGNs, …)

As long as we don’t have very nice uv-plane coverages, parametric
imaging will be a powerful tool to derive accurate quantities on the
details of an image: spot flux, spot temperature, spot precise location 
…
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Modelling NGC 1068 in the N band

ChoosenChoosen model:model:

2 2 ellipticalelliptical gaussiansgaussians (orientation (orientation providedprovided by by thethe
largerlarger scalescale jet direction) jet direction) withwith thethe largerlarger gaussiangaussian
containingcontaining silicate silicate dustdust grains (grains (thethe corecore andand thethe
torus)torus)

A lot of a priori informationA lot of a priori information

(Jaffe et al. 2004)
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A real Spherical Cow interferometric science 
example

A real Spherical Cow interferometric science 
example

© Peter Tuthill 2006
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Spherical Cow modelling of NGC 1068Spherical Cow modelling of NGC 1068

Two more visibility spectra available compared to the Jaffe et al. (2004) 
paper

Poncelet, Perrin & Sol (2006)
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Spherical Cow modelling of NGC 1068Spherical Cow modelling of NGC 1068

Fit of the visibilities with a λ-dependant UD 
model along each azimuth

Elliptical shape not statistically significant
Two scales are clearly visible:
30 mas (2 pc) and 60 mas (4 pc)

Fit of the visibilities with a 2 UD model + 
λ-dependant relative intensity

Need for radiative transfer between the
two components

Core

Extended
component
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Spherical Cow modelling of NGC 1068Spherical Cow modelling of NGC 1068
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Spherical Cow modelling of NGC 1068Spherical Cow modelling of NGC 1068
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Spherical Cow modelling of NGC 1068Spherical Cow modelling of NGC 1068

The observed spectrum was used to remove
the degeneracy between the optical depth
and the temperature
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Spherical Cow modelling of NGC 1068Spherical Cow modelling of NGC 1068

Spectrum of the optical depth of the extended
component

Core

Extended
component
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Conclusion on the modelling of NGC 1068Conclusion on the modelling of NGC 1068

We have detected a spherical cow at the center of NGC 1068 !

Very simple phenomenological model

But it is good to use as it requires less a priori to analyse the data.

A better uv-plane coverage (and closure phases) is needed to better assess
(constraint) departure from spherical symmetry

A better uv-plane coverage is needed to better characterize the optical depth
of the extended component.

Spatial frequency data close to zero are also required to measure the amount
of uncoherent flux due to the larger scale structures

observations with a single telescope
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Some conclusionsSome conclusions

Make sure data are well calibrated and have no bias

Beware of correlated noise (use of same calibrators), especially for high
dynamic range modelling

Be careful (mostly in wide band) that your model and visibility data are 
based on the same estimator

Do not be afraid of object or data complexity.

Help us ask your funding agencies for more telescopes !
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