Astrometry

(Wide-Angle, Narrow-Angle, Narrower-Angle, Imaging, Differential Phase)

Michelson Summer Workshop

Frontiers of Interferometry: Stars, disks, terrestrial planets

Pasadena, USA, July 24th-28th 2006

B. F. Lane Kavli Institute for Astrophysics & Space Research M.I.T 24th July 2006

What you should learn from this talk

- Definitions
- Motivation
- Orders-of-magnitudes of the observables and requirements
- Types of Interferometric Astrometry
 - Wide-Angle (all-sky).
 - Narrow-Angle, or "Dual-Star" (separations of few 10s of arcseconds)
 - Very Narrow-Angle (~0.1-1 arcsecond, "speckle")
 - Imaging (<0.1 arcsecond)
 - Differential Phase (<0.1 arcsecond)
- Descriptions
- Challenges & Strategies for meeting them.
- Some Results

What is astrometry and why should I care?

- Measuring the positions and motions of stars.
- Parallaxes still the most fundamental & reliable way to measure distances in astronomy.
- Gives a direct handle on object masses, even unseen ones.
 - Planets are the obvious example

$$\Delta \theta \approx 1000 \frac{m_p/m_J}{M_*/M_s} \frac{a/\mathrm{AU}}{D/pc} \,\mu\mathrm{asec}$$

- Gravitational microlensing
- Galactic center, black holes

100

Astrometric Data True Excursion Model Fit

10

Relative Dec (µas

Mass ratio Sun/Jupiter ~ 1000:1 Motion of Planet ~ 1000X stellar motion Star's motion ~ 0.001 arcsec peak to peak

1 mas (milliarcsec) is angular size of an astronaut standing on the moon as seen from Earth

Michelson Summer Workshop

Relative RA (uas

Boden, Shao & Van Buren (1998)

-100

What levels of precision are needed?

- For parallaxes state-of-the-art ~1 milli-arcsecond (1 mas ~ 4.8×10^{-9} rad).
 - Need μ -arcseconds
 - This should be tied to the entire sky, or "global", though some exceptions exist.
 - Resulting fractional precision ~ 10^{-9} 10^{-12}
- For planets in Galactic neighborhood (10 pc)
 - Jupiters ~ 0.1 mas
 - Earths $\sim 1 \ \mu as$
 - This can be tied to a nearby reference, no need for global astrometry.
 - Fractional precision depends on case:
 - For a planet in a single system with a background star, the astrometric signal is ~10 μ as, star/reference separation is ~10 arcsec, giving a fractional precision of 10⁻⁶.
 - For a binary star system containing a planet, the Planet/Star mass ratio is 10⁻³ and the planet/binary axis ratio is 0.1, hence the final required precision is 10⁻⁴.

Michelson Summer Workshop	B. F. Lane – Astrometry	24 th July 2006 4	

How to Achieve Good Astrometric Precision

B SNR

- Measurement precision is given by $\sim \frac{\lambda}{2} \frac{1}{2}$
 - Hence we require large B
- Interferometry: a way to achieve high spatial resolution without the cost of a large telescope.
- Combine two or more smaller telescopes with separations in the 10-1000 meter range.
 - Gives few-milliarcsecond resolution
 - Then you have to get SNR \sim 10-1000.

An Interferometer

An Astrometric Observation

• Measure the fringe delays of many stars across sky. Solve the delay equation.

$$d = \vec{B} \bullet \vec{s} + c$$

- However, \vec{B} is also unknown. The answer is to observe many stars and solve for both baseline and positions.
- Easy! We're done here, it's Miller time! Not so fast....

$$\sigma_s \approx rss[\frac{\delta d}{|B|}, k^{-1}\frac{\delta \phi}{|B|}, \frac{\delta B}{|B|}\Delta s]$$

Michelson Summer Workshop

Challenge #1: Measuring the Delay

- Most pathlength measurements are done used heterodyne laser metrology.
- Frequency-stabilized laser (633nm, or 1.3 μm)
- Source plate splits into two polarizations with slightly different frequencies.
- Fraction of beams combined in a reference detector (generates tone).
- Measurement beam passes through path of interest, then recombined to generate second tone.
- Frequency differences in the two tones indicate pathlength change vs. time.
- Only measures path *changes*.
- nm-stability is easy, pico-meter doable.

Metrology Reference Points

Instrumental Path Error Examples

- Internal laser metrology fiducial is not located at pivot points that define the wide-angle baseline.
 - Gives error term that looks like a correction to the baseline.
 - Need to know CC location to high accuracy (~50 μm).
- Field separator may affect transmitted metrology differently than reflected metrology. If this effect is position-dependent, bad things happen...

Michelson Summer Workshop

Challenge #2: Know your Baseline Vector

- Requires knowledge of the vector separating your two apertures with the same fractional precision as your astrometry.
 - For SIM (1 μ as global, 10 m baseline) ~ 50 pico-meters (!)
 - For NPOI (1 mas global, 40 m) \sim 200 nm.
 - For PTI
 - NAA mode $(0.1 \text{ mas}/20 \text{ arcsec}, 110 \text{m}) \sim 5 \text{ micron}$
 - VNAA mode (10 μ as/0.1 arcsec,110m) ~ 10 mm
- In almost every case, no surveying can achieve this. One must use other stars to determine baseline geometry, and rely on various techniques to maintain stability.
 - SIM: multiple simultaneous interferometers sharing common metrology points.
 - NPOI: laser metrology ties to bedrock references ensures stability, many sequential observations of stars to build up global solution.
 - PTI: sequential all-sky observations to establish baseline. Rely on mechanical stability in between baseline measurements.

Michelson Summer Workshop	B. F. Lane – Astrometry	24 th July 2006	11

Strategies for Achieving Baseline Stability

Strategies for Achieving Baseline Stability

Michelson Summer Workshop

Challenge #3: Know your Aperture

- One often critical issue is knowing exactly how to define the end-point of your baseline vector, i.e. which fraction of the incoming wavefront gets sampled, and how does that translate into a baseline?
 - In Wide-Angle astrometry you move the siderostats (or telescope) to point to a new star.
 - In Narrow-Angle astrometry the telescope pointing doesn't change but subsequent optics move to repoint between stars.
 - In VNAA neither is moved; two stars end up on slightly different parts of the detector.

Challenge #4: Measuring Phase

- Fringe has to be found and tracked.
 - Typically use the ABCD algorithm.
 - 4 rapid intensity measurements (labeled "A", "B" etc) while the internal delay is swept by 1 wavelength. Let X=A-C, Y=B-D. Then:

- Unfortunately this has fringe ambiguities (2π) wraps).
 - Solution is to measure phase is several wavelength "channels" and solve for group delay.
- Danger Will Robinson: Phase is not Delay!
 - Techniques that measure phase will have to have to know λ to that same precision.

30

20

6

Michelson Summer Workshop	B. F. Lane – Astrometry	24th July 2006	15

A Beam Combiner

Michelson Summer Workshop

Challenge #5: Atmospheric Turbulence

- The atmosphere is highly turbulent, with eddies of different refractive index blowing in front of the telescope, causing "seeing".
- The starlight wavefront is disrupted in ~10 ms, over scales of ~10 cm; the fringe pattern is smeared out or broken up.
- This usually limits interferometers to small apertures and short exposures, limiting their sensitivity ($m_K \sim 7$).
 - This has led to the use of adaptive optics (r_0) and phase referencing (τ_0) .
- Over narrow fields (~30-60 arcsec) atmospheric error is correlated and can largely be subtracted out.
- Differential astrometry most sensitive to high-altitude turbulence
- Need to consider unusual instrument sites, i.e. South Pole (no jet stream).

$$\sigma_d^2 \propto \frac{1}{t} \int dh C_n^2(h) V(h)^{-1} h^2$$

Types of Ground-based Astrometry

"Wide-Angle"

٠

- Atmospheric effects are uncorrelated.
- ~1-5 mas performance.
- MkIII and NPOI interferometers.
- "Narrow-Angle"
 - Less than ~ 1 arc-minute
 - Atmospheric errors subtract but out (mostly)
 - This does not help the sensitivity problem, though.
 - Very high performance over small angles.
 - 10-100 microarcseconds.

Michelson Summer Workshop

What is Phase Referencing ?

- Analogous to NGS adaptive optics on a large telescope:
 - Fringe track on a bright star within the isokinetic patch of the target star (30-50 arcsec).
 - Measure fringe motion induced by atmosphere.
 - Correct using optical delay lines.
- Allows integration times longer than would ordinarily be possible.
 - Gives time for high-precision measurement, but doesn't improve limiting magnitude.
- Well suited for astrometry since we're looking at nearby (and thus bright) stars by design.

Long Delay Line

Michelson Summer Workshop

The Effect of Phase Referencing on V²

Challenge #4: Atmospheric Dispersion

- In a plane-parallel, perfectly calm atmosphere, and using an evacuated delay line, observing a monochromatic source, there would be no net delay effect due to the atmosphere.
- In other words....
 - Index of refraction depends on wavelength (star color)
 - It fluctuates with temperature, pressure.
 - Non-plane-parallel atmosphere
- Multi-color techniques have been used to find the fringe phase as a function of wavelength, and solve for path effect.
 - Limited by water vapor (has different index vs. wavelength slope).

Michelson Summer Workshop

Narrow-Angle Astrometry Example: 61 Cyg

- Narrow-Angle Astrometry was/is going to be used on the Keck & VLTI Auxiliary telescopes to search or massive planets in distant orbits around nearby stars.
- Typical precision goals are 20 µarcseconds.
- The technique was developed and demonstrated at PTI in 1998-1999.

Michelson Summer Workshop	B. F. Lane – Astrometry	24th July 2006	22
	Figure by A. F. Boden & ISC		

Very Narrow-Angle Astrometry

- A binary star produces a double fringe packet.
 - The delay difference between packets tells you the angle between the stars (projected onto the baseline).
- Most stars are in multiples, and the distribution peaks at apparent separations of ~0.1 arcsec.
- A planet is stable orbiting one component in a binary, as long as $a_{Planet} < 0.1 a_{Binary}$

Michelson Summer Workshop

10⁴

Period (day)

Calculations indicate that sufficient precision to detect planets is possible.

10⁰

10²

B. F. Lane – Astrometry

10⁶

 10^{8}

10¹⁰

VNAA Experiment Layout

- VNAA has been implemented at PTI
 - Light is split after main delay lines into two sets.
 - One for fringe tracking to stabilize path errors
 - The other is used to slowly "scan" in delay and trace out the double fringe packet.

Michelson Summer Workshop

VNAA Experiment Layout

- VNAA has been implemented at PTI
 - Light is split after main delay lines into two sets.
 - One for fringe tracking to stabilize path errors
 - The other is used to slowly "scan" in delay and trace out the double fringe packet.

Very-Narrow Angle Astrometry Data

- Data Shown: HD 171779 (G9III + K0III binary, 192 yr period)
 - 0.2 arcsecond separation.
- Half the light used for fringe tracking, half for scanning the fringe.
- Scan period 1.5 sec.
- 2000 scans/star/night.
- We fit a "double-fringe" model to the data, using a least-squares method, solving for the differential delay.

$$\Delta d = \vec{B} \cdot \Delta \vec{s}$$

Michelson Summer Workshop

A Model Fit to VNAA Data

- Fringe model is very oscillatory
 - Many local minima, corresponding to onewavelength ambiguity.
- Astrometry is constrained in one direction only, || to baseline.
- Proper approach is to calculate χ^2 (RA, δ) surfaces for each scan, and co-add.
 - Earth-rotation, co-adding breaks ambiguity.
 - Data shown: $1-\sigma$ error ellipse 8 x 144 μ -arcseconds.
- Individual scans show Gaussian behavior in the fit residuals.

Michelson Summer Workshop

VNAA Short-term Noise Performance

- Fit residuals are white to at least 1000 seconds.
- Performance is in the range 3-10 micro-arcseconds in an hour.
 - Correlates with seeing as inferred from fringe tracker.
- Systematics expected below ~ 10 microarcseconds.
 - Dispersion
 - Beam-walk
 - Water-vapor effects

Michelson Summer Workshop

Typical VNAA Data

Michelson Summer Workshop

Repeatability

- Typical formal error ellipse <u>5</u> x 100 micro-arcseconds.
- Fit to linear trend yields: $\sqrt{\chi_r^2} \approx 3$

– Implied repeatability $\sim 15 \text{ x } 300 \text{ micro-arcseconds.}$

Michelson Summer Workshop	B. F. Lane – Astrometry	24th July 2006	30

Orbit determinations using VNAA

- V819 is a triple system
 - 5.5 yr wide pair
 - 2.2 day inner system, which eclipses.
- Apparent narrow orbit size is determined to be 108 ± 9 µarcseconds. The wide separation is 73 ± 0.6 mas (limited by duration of observations)

Michelson Summer Workshop

Binary Orbits

- We have begun to observe several known "speckle" binary systems (e.g. HD 202275).
- Results compare favorably with previous data.
- Can determine apparent orbital geometry to ~0.2 %
- $a=0.2319 \pm 0.0004$ arcseconds.

Michelson Summer Workshop

The PHASES Survey

- A survey of ~50 binary stars: "PHASES"
 - Brighter than K~4.5
 - Binary separation less than 1 arcsecond
 - 36 systems with minimum detectable mass < 1 M_J
 - Average minimum detectable mass 0.7 M_J
 - 17 systems with maximum stable period < 2 years.

Imaging Astrometry

- A binary star produces a double fringe packet.
- The delay difference between packets tells you the angle between the stars (projected onto the baseline).
- If very close, the fringes overlap, reducing the fringe contrast (visibility).
- The fringe visibility of a pair of sources is given by

$$V^{2} = \frac{1 + R^{2} + 2R\cos(2\pi \vec{B} \cdot \vec{s} / \lambda)}{(1 + R)^{2}}$$

• The overlap criterion is the "delay beam"

$$\theta = \frac{\lambda}{B} \frac{\lambda}{\Delta \lambda}$$

Michelson Summer Workshop

B. F. Lane – Astrometry

24th July 2006 34

Interferometric Imaging: 12 Boo

Differential Phase Techniques

- Phase = the location of the fringe.
 - If you know the baseline this gives the location of the source.
- Differential phase techniques make use of the fact that in some cases the centerof-light for a system of interest depends on the wavelength of observation.
 - For a Hot Jupiter the contrast varies strongly between 2 and 5 µm (at 2 the system looks single. At 5 it looks like a high-contrast binary)
 - The expected phase difference between the two colors is ~0.1 milliradians.

Summary

- Astrometry is the art of measuring stellar positions to high precision.
 - Micro-arcseconds to milli-arcseconds
 - Fractional precisions of 10^{-4} to 10^{-12}
 - Useful for planet-finding, parallaxes and mass measurement.
- Astrometry comes in many flavors, depending on the field of view.
- The best results are possible only from space, but science can still be done on the ground. Preferably some form of differential technique should be used.
 - Over small angles atmospheric effects cancel.
 - ~20 micro-arcsec over 0.1 arcseconds is being published.
- Phase referencing is crucial in astrometry, by making it possible to find close reference stars. Also, by separating the tracking and science measurements one can optimize each separately.

Backup Slides