

Synthesis Imaging Claire Chandler, Sanjay Bhatnagar NRAO/Socorro

Michelson Summer Workshop Caltech, July 24-28, 2006

- Based on the van Cittert-Zernike theorem:
 - The complex visibility of a source, V(u,v), is the Fourier Transform of its intensity distribution on the sky, I(l,m)

$$V(u,v) = \iint I(l,m)e^{2\pi i(ul+vm)}dldm$$
$$I(l,m) = \iint V(u,v)e^{-2\pi i(ul+vm)}dudv$$

- u,v are spatial frequencies in the E-W and N-S directions, and are the projected baseline lengths measured in units of wavelength, B/λ
- *l,m* are direction cosines relative to a reference position in the E-W and N-S directions

Some 2D FT pairs

Associated Universities. Inc.

Some 2D FT pairs

Some 2D FT pairs

Observed sky distribution, *I*(*l*,*m*)_{obs}, is the convolution of the true sky distribution, *I*(*l*,*m*)_{true}, and the point spread function. This is equivalent to sampling the true visibility function, *V*(*u*,*v*), with some sampling function, *S*(*u*,*v*), in the *uv* plane:

$$I_{obs}(l,m) = I_{true}(l,m) * PSF = \iint S(u,v)V(u,v)e^{-2\pi i(ul+vm)} dudv$$

• For a single telescope, *S*(*u*,*v*) is continuous, and in the absence of seeing is the autocorrelation function of the aperture

• For an interferometer, S(u,v) is discrete

$$S(u,v) = \sum_{k} \delta(u_k,v_k)$$

• The measured visibility is the true visibility multiplied by the sampling function

$$V_{meas}(u,v) = S(u,v)V_{true}(u,v)$$

Sampling in the *uv* plane

- Aperture synthesis:
 - Ideally want to make sampling as complete as possible, to synthesize an aperture of diameter B_{max}

Telescope locations instantaneous *uv* coverage

• How "nice" the resulting PSF looks depends on how well the *uv* plane is sampled: VLA snapshots

\leftarrow 3 antennas on each arm

8 antennas on each arm \rightarrow

Earth rotation synthesis

- Earth rotation synthesis:
 - We can help to fill in the uv plane by making use of the rotation of the Earth. A fixed baseline between telescope 1 and telescope 2, B_{12} , tracking a source from rise to set, will have a changing *projected baseline*, B_{proj} , in the direction of the source, and will trace out *two* arcs in the uv plane: one for baseline 1-2, and one for 2-1
 - There are two arcs because the visibility is Hermitian:

 $V(-u,-v) = V^*(u,v)$

Convolution with the PSF; terminology

• The image obtained from the FT of the sampled visibility is the *dirty image*

 $I_{dirty}(l,m) = FT[S(u,v)V_{true}(u,v)]$

• The dirty image, I_{dirty} , is the convolution of the true image, I_{true} , and the *dirty beam* (PSF), B = FT(S)

$$I_{dirty} = B * I_{true}$$

- [In practice, $I_{dirty} = B^*(I_{true}+I_N)$, where $I_N = FT(Vis. Noise)$]
- To recover I_{true} , we must deconvolve B from I_{dirty}
- Note: we can do this because *S*, and therefore *B*, is well-defined

The dirty image

- Not all parts of the *uv* plane are sampled
- Central hole for $u < u_{min}$ and $v < v_{min}$:
 - Total integrated flux is not measured

$$V(u = 0, v = 0) = \iint I_{dirty}(l, m) dl dm = 0$$

- Upper limit on the largest scale in the image plane
- No measurements for $u > u_{max}$ and $v > v_{max}$:
 - Size of the main lobe of the PSF (the resolution) is finite
- Holes in the *uv* plane:
 - Contribute to the sidelobes of the PSF

The missing information

- Although the total flux is not measured, the flux for scales corresponding to the Fourier components between u_{min} and u_{max} can be measured
- In the presence of extended emission, the observations must be designed keeping in mind:
 - Required resolution \Rightarrow maximum baseline
 - Largest scale to be reliably reconstructed \Rightarrow minimum baseline

Recovering the missing information

- To recover information beyond the maximum baseline requires extrapolation (unconstrained)
- Recovering information corresponding to the central hole is possible, but need extra information (e.g., measure total flux using a large single telescope)
- Information corresponding to the *uv* holes requires interpolation

Deconvolution of the PSF in the image plane = interpolation in the visibility plane

• Non-linear methods required

Recovering the missing information

- Note: there is an infinite number of sky distributions consistent with the measurements, need to provide some constraints to the interpolation
- We can assume:
 - The sky brightness is positive (but there are exceptions)
 - The sky is a collection of point sources (weak assertion)
 - The sky could be smooth
 - The sky is mostly blank
- Non-linear deconvolution algorithms search for a model image, I_{model} , such that the residual visibilities $V_{resid} = V_{model} V_{meas}$ are minimized subject to the constraints given by the assumptions

- The rest of this lecture addresses some practical aspects of synthesis imaging: choices you will probably be asked to make by any piece of synthesis imaging software
 - FFTs and the need to grid the *uv* data
 - Forming the dirty beam: weighting
 - An example of a deconvolution algorithm: Clean
 - Finite support: the role of boxes
 - Choosing the image and pixel sizes

- The Fast Fourier Transform (FFT) is used for efficient Fourier transformations. However, it requires a regularly-spaced grid of data
- Measured visibilities are irregularly sampled (along tracks in the *uv* plane)
- Visibilities must be interpolated onto a regular grid using a suitable function

• The PSF is a weighted sum of cosines corresponding to the measured Fourier components:

$$B(l,m) = \frac{\sum_{k} w_{k} \cos(u_{k}l + v_{k}m)}{\sum_{k} w_{k}}$$

- The visibility weights, *w*, are also gridded onto a regular grid, FFTed, and used to compute the dirty beam
- The peak of the dirty beam is normalized to unity
- The 'main lobe' has a size of order $dx \sim 1/u_{max}$ by $dy \sim 1/v_{max}$ this is the resolution of the instrument, or 'clean beam'

- Sidelobes extend indefinitely
- Close-in sidelobes are controlled by the envelope of the *uv* coverage: e.g., if the envelope is a circle, the sidelobes near the main lobe must be similar to the FT of a circular disk

• The weighting function , w_k , can be chosen to modify the sidelobe structure of the beam

$$B(l,m) = \frac{\sum_{k} w_{k} \cos(u_{k}l + v_{k}m)}{\sum_{k} w_{k}}$$

- 'Natural weighting': $w_k = 1/\sigma_k^2$ where σ_k^2 is the rms noise of the k^{th} gridded visibility
 - Gives the best rms noise across the image
 - Smaller baselines (large spatial scales) have higher weights
 - The effective resolution is worse than the inverse of the longest baseline

- Uniform weighting: $w_k = 1/\rho(u_k, v_k)$ where $\rho(u_k, v_k)$ is the density of uv points in the k^{th} cell
 - Short baselines (large scale features in the image) are weighted down
 - Relatively better resolution
 - Increased rms noise

22

23

- 'Robust' or 'Briggs' weighting: $w_k = 1/[S^2\rho(u_k,v_k) + \sigma_k^2]$
 - $S^2 = (5 \cdot 10^{-R})^2 / \rho(u_k, v_k)$ is a parameterized filter that allows continuous variation between optimal resolution (uniform weighting) and optimal noise properties (natural weighting) by varying the robust parameter, *R*

Examples of weighting: VLA

\Rightarrow tune resolution and sensitivity to suit your science

Examples of weighting: sparse uv coverage

 \Rightarrow natural and uniform weighting similar for sparse *uv* coverage

• The PSF can also be further controlled by applying a tapering function to the weights (e.g., such that the weights smoothly go to zero toward longer baselines)

 $w'_k = T(u_k, v_k) w_k(u_k, v_k)$

- Bottom line on weighting/tapering:
 - They help a bit, but imaging quality is limited by finite sampling of the *uv* plane

The Clean deconvolution algorithm (Högborn 1974)

- Various deconvolution algorithms are available;
 Clean is an example of a scale-less algorithm
- Assume the sky is composed of point sources, and is mostly blank; then:
 - 1. Search for the peak in the dirty image
 - 2. Subtract a fraction g (the loop gain) of the PSF from the position of the peak (typically $g \sim 0.05-0.1$)
 - 3. Add g times the peak to a single pixel in the model image
 - 4. If residuals are not noise-like, go to 1
 - Smooth the model image by an estimate of the main lobe of the PSF (the clean beam) and add the residuals to make the 'restored image'

The Clean deconvolution algorithm

- Stopping criteria: either specify a maximum number of iterations or the maximum in the residual image (some multiple of the expected noise is typical)
- Search space can be constrained by user-defined windows
- Ignores the coupling between pixels (extended emission)

Clean example: model image

• Model source as the sum of many point sources

Clean example: residual image

 Subtract (point sources × PSF) from dirty image to give residual image

31

 Smooth the model image by the clean beam and add the residuals to form the restored image

Comparison with *I*_{true}

• Convolve I_{true} with clean beam for comparison: $I_{restored}$ I_{true} *(clean beam)

$$F_{peak} = 7.22$$

 $F_{int} = 120$

7.65 147

Clean example: visibilities

Finite support: the role of boxes

- Limit the search for components to only parts of an image
 - A way to regularize the deconvolution process
- Useful for small numbers of visibilities (VLBI / optical / snapshots using large-N arrays)
- Stop when Cleaning within the boxes has no global effect

With boxes:

- The size of the cells in the image needs to be chosen so that the main lobe of the dirty beam is at least Nyquist sampled: $\Delta l \leq 1/2u_{max}, \Delta m \leq 1/2v_{max}$
- The extent of the dirty image, $l \times m$, is related to the size of the grid cells in the uv plane, through the FT relationship $l = 1/\Delta u$, $m = 1/\Delta v$; if you make the image smaller than $1/\Delta u \times 1/\Delta v$ there may be aliasing
- The size of the image should be big enough to include the largest spatial scale on which there is measured flux (shortest *uv* spacing)
- If the image is not big enough, sidelobes from sources outside the image may be included and will not be deconvolved properly
- But also: if you have *N* independent visibilities you can only sensibly image of order ~*N* independent beam areas

- Everything I have told you about synthesis imaging assumes that you have visibilities with calibrated amplitudes and phases
- What if you don't?
 - Self-calibration
 - See Chris Haniff's lecture
- There are many other subtleties not covered here; for further reading please see Synthesis Imaging in Radio Astronomy II, ASP Vol. 180 (1998)
- Interferometry and synthesis imaging requires you to think in FT space! This takes practice...

