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We are at an intermediate stage in the
Interferometric observation process
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We want to extract the information about the
source and throw away the noise




Bayesian inference theory tells us that the
best way to do this is in a single global step
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In practice, we adopt a multi-step approach
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How far are we from making the best use of
the interferometric data that we have?
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We need a systematic way of solving “inverse

problems”
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Bayesian inference formalizes the Scientific
Method
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Bayes’ Theorem tells us how to modify our
degree of belief in our models given new data
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Solving inverse problems Is straightforward,
but can be computationally intensive

e Recipe:
— Generate all possible models (tedious but possible).

— Find the likelihood that each model would have
generated the data (easy).

— The one which best predicted the data wins (modulo
prior information).



Bayesian methods allow us to get more out of
the data when we have a priori constraints
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“Frequentist” estimators are an ad-hoc, non-
Bayesian, way of solving inverse problems
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Consider a fringe pattern from an idealized
phase-stable interferometer
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A Fourier-based estimator is intuitively
appealing

Spatial frequency




We run into problems as we consider more
realistic scenarios
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Instead, we explicitly define a forward model
and from this compute a Bayesian inverse

pixel data cos,sin amplitudes
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A simple example is the ABCD scenario
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It Is easy to modify the Bayesian method for
different forward models

e Uneven sampling intervals
e Hot/dead pixels
e QOverlapping fringe peaks



The problem becomes more complex when
we include atmospheric phase perturbations
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We pose the problem in terms of estimating
parameters iImmune to atmospheric piston
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This leads to the concept of “incoherent
averaging”
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Ad-hoc combination of estimators leads to
bias terms
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We compensate for biases with theoretical
and empirical bias-subtraction methods
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Proper treatment of bias terms Is essential,
especially for the bispectrum
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The noise on these estimators 1S a non-linear
function of the detector noise

Triple-product phase error (radians)
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This leads to a critical choice between
coherent and incoherent integration

0.8

0.6

0.4

0.1

/t,

V@), / 1(VE(THIT

2.5

2

1.5




Analysis of the covariances suggests that a
more global method may do better

e In the high-SNR regime, the noise on triple products
sharing a common baseline is correlated.

e In the low-SNR regime, the noise on all triple products is
uncorrelated.
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The engineer, the mathematician and the
bucket of water



An example of a more global approach Is
multi-wavelength fringe-fitting (Jorgensen)
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The remaining work is dealing with second-
order “nuisance parameters”

e Higher-order wavefront errors

e Piston phase changes with time (fringe smearing)
e Non-ideal detector characteristics

e Spectral effects

e Polarisation effects



Spatial filtering can reduce the number of
nuisance parameters
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We need to make use of any auxiliary data we
have to constrain the nuisance parameters

e Fringe tracker/science combiner phase jitter &
scintillation

o Tip/tilt jitter

e Spatial filter photometric channels



Data selection, binning, or weighting based
on auxilliary data is a powerful tool
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Stating the problem in terms of a global
model leads to the concept of calibration
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Think globally, act locally?
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