
Data reduction – a Bayesian 
Perspective

David Buscher
Cavendish Laboratory

Cambridge



We are at an intermediate stage in the 
interferometric observation process
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We want to extract the information about the 
source and throw away the noise



Bayesian inference theory tells us that the 
best way to do this is in a single global step
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In practice, we adopt a multi-step approach
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How far are we from making the best use of 
the interferometric data that we have? 

Quirrenbach
et al 1996



We need a systematic way of solving “inverse 
problems”
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Bayesian inference formalizes the Scientific 
Method 
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Bayes’ Theorem tells us how to modify our 
degree of belief in our models given new data 
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Solving inverse problems is straightforward, 
but can be computationally intensive

• Recipe:
– Generate all possible models (tedious but possible).
– Find the likelihood that each model would have 

generated the data (easy).
– The one which best predicted the data wins (modulo 

prior information).



Bayesian methods allow us to get more out of 
the data when we have a priori constraints
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“Frequentist” estimators are an ad-hoc, non-
Bayesian, way of solving inverse problems
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Consider a fringe pattern from an idealized 
phase-stable interferometer
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A Fourier-based estimator is intuitively 
appealing
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We run into problems as we consider more 
realistic scenarios



Instead, we explicitly define a forward model 
and from this compute a Bayesian inverse
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A simple example is the ABCD scenario
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It is easy to modify the Bayesian method for 
different forward models 

• Uneven sampling intervals
• Hot/dead pixels
• Overlapping fringe peaks



The problem becomes more complex when 
we include atmospheric phase perturbations
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We pose the problem in terms of estimating 
parameters immune to atmospheric piston
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This leads to the concept of “incoherent 
averaging”



Ad-hoc combination of estimators leads to 
bias terms
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We compensate for biases with theoretical 
and empirical bias-subtraction methods

Perrin 2003



Proper treatment of bias terms is essential, 
especially for the bispectrum

Thorsteinsson
& Buscher 2004



The noise on these estimators is a non-linear 
function of the detector noise

• For SNR>> 1    σθ
2(T123)≅ σθ

2(V12)+ σθ
2(V23)+ σθ

2(V31)
• For SNR<< 1   σθ

2(T123)≅ σθ
2(V12)σθ

2(V23)σθ
2(V31)



This leads to a critical choice between 
coherent and incoherent integration



Analysis of the covariances suggests that a 
more global method may do better

• In the high-SNR regime, the noise on triple products 
sharing a common baseline is correlated.

• In the low-SNR regime, the noise on all triple products is 
uncorrelated.

Telescopes Atmosphere-
independent 
phase quantities

Number of 
measurable 
triple products

4 3 4

6 10 20

10 36 120



The engineer, the mathematician and the 
bucket of water



An example of a more global approach is 
multi-wavelength fringe-fitting (Jorgensen)



The remaining work is dealing with second-
order “nuisance parameters”

• Higher-order wavefront errors
• Piston phase changes with time (fringe smearing)
• Non-ideal detector characteristics
• Spectral effects
• Polarisation effects



Spatial filtering can reduce the number of 
nuisance parameters

Wavefront
aberrations Z1… ZN

A,φ



We need to make use of any auxiliary data we 
have to constrain the nuisance parameters

• Fringe tracker/science combiner phase jitter & 
scintillation

• Tip/tilt jitter
• Spatial filter photometric channels



Data selection, binning, or weighting based 
on auxilliary data is a powerful tool



Stating the problem in terms of a global 
model leads to the concept of calibration
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Think globally, act locally?
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