

Fringe tracking and bootstrapping

David Buscher <dfb@mrao.cam.ac.uk> Cavendish Laboratory Cambridge

Outline

- The need for fringe tracking
- Limitations of fringe tracking on resolved sources
- Possible solutions
- Technical implications
- Science implications

An interferometer is fundamentally limited by two things

The atmosphere introduces both high-frequency phase jitter and lower-frequency **OPD** fluctuations

Figure 1. Path offset from the equal optical path position as a function of time for three baselines.

Phase jitter limits the usable integration time

5

Low-frequency OPD drifts mean we may not see the fringes at all

We employ fringe trackers to solve these problems

- Cophasing systems:
 - Phase residuals $\sim \lambda/20$
 - "Hardware cophasing" vs "Software cophasing"
 - Bright-source high-SNR/high dispersion science
 - Science camera in long-integration mode
- Coherencing systems
 - Phase residuals ~ 3 λ for R=30
 - Faint-source science
 - Science camera needs to be in "speckle mode"

Fringe tracking methods

- Phase tracking
 - Follow 180° phase "wraps"
 - Requires sampling time <<t₀
- Group delay tracking
 - Dispersed fringes are tilted when OPD non-zero
 - Recover fringe envelope position using 2-D power spectrum.

Group delay coherencing can track fringes on sources at least 2.5 magnitudes fainter than phase-tracking cophasing

The fringe tracker determines what kind of science we can do

• The fringe tracker must achieve a usable signal-tonoise ratio in an integration time fixed by the atmosphere.

• If we cannot fringe-track on a target, we can never observe it interferometrically, no matter how much observing time we have.

Many observations require several pixels across a resolved source

The SNR for fringe tracking scales as V²N

The maximum resolution we can achieve is limited by the source itself

Dual-star systems allow the use of a nearby unresolved reference star

Dual Object Interferometry

Dual-star systems have limited sky coverage

Baseline bootstrapping makes use of the science target itself

Bootstrapping requires more telescopes than needed for u-v coverage alone

In 2-d arrays the baseline efficiency can be high

Instantaneuous (u,v) coverage

Array layout

Bootstrapping is sensitive to SNR "dropouts" and phase discontinuities

Implications for science

- Fringe tracking determines whether we can observe the object at all
- For resolved objects we need to consider a bootstrapping array
 - What is the longest "link in the chain" we can use?
- We still need to see if the science SNR can be achieved in a reasonable time
 - Consider whether fringe tracker SNR is high enough for cophasing rather than coherencing