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What’s to Come....
• A Close Look at.....
 Limb Darkening,
 Plane-Parallel Models,
 The Sun,
 Granulation and 3-D Models, 
 and Procyon

•Extended Photospheres:
 Lines and Molecular Bands 
 Spherical vs. Plane-Parallel Limb Darkening
 Rosseland Angular Diameter

•Odds and Ends:
  Gravity Darkening vs. Limb Darkening
  Stars are not Blackbodies
  Synthetic Visibilities
  Stellar Surfaces for the Future 
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For the best spatial resolution...
Get to know our Sun!
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Reconstructing the Sun’s Temperature Structure:
Spatially Resolved Absolute Intensities

Vernezza, Avrett, & Loeser (1976) ApJS 30, 1

If spatial resolution is not 
an issue:
Measure the intensity, Iλ ,in 
absolute units at the center 
of  the Sun’s disk and solve 
for the brightness 
temperature, T

b
.

Orbiting Solar Observatory 6

This won’t work for other
stars (at least not yet!).
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Limb Darkening - Probing Atmospheric Structure 

If you measure:

•The diameter of a star at two or more wavelengths

•The amplitude of the 2nd (or higher) lobe of a star’s visibility curve at one 
or more wavelengths

You are likely measuring a temperature gradient in (and possibly on)
the star’s atmosphere.

4 M. Wittkowski et al.: Interferometry and spectroscopy of Menkar
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Fig. 1. Squared visibility amplitudes and error bars of α Cet obtained
with VLTI/VINCI, together with best fitting models of a uniform disc
(upper dashed light blue line), a fully darkened disc (lower dashed
light blue line), a parametrisation I = µα with α=0.24 (dashed blue
line) and of PHOENIX and ATLAS 9 model atmosphere predictions
(solid red and green lines). The PHOENIXmodel shown has parameters
Teff=3800 K, log g=1.0, M = 2.3M�; the ATLAS 9model Teff=3800 K,
log g=1.0 (see text for more details). The upper panel shows the full
range of the visibility function, while the middle panel is an enlarge-
ment of the obtained squared visibility values in the first lobe, and the
bottom panel shows an enlargement of the low squared visibility func-
tion in the 2nd lobe. Our measurements are significantly different from
uniform disc and fully-darkened disc models, and well consistent with
the LD (I = µα), PHOENIX, and ATLAS 9 models.

Table 3. Overview of our UVES observations of αCet obtained on
11 August 2003 between 9:30h and 9:40h UT. Shown are the cen-
tral wavelength λcentral of each of the UVES gratings and the recorded
wavelength ranges λmin − λmax. The spectra of the red arm of UVES
were recorded using two different detectors, and are thus split into the
two wavelength ranges. Also given are, for each grating, the spectral
resolution R = λ/∆λ, the number of individual exposures, their ex-
posure times, as well as the maximum signal-to-noise ratio S/Nmax
reached.

λcentral λmin − λmax R # of Exp. time of S/Nmax
(nm) (nm) exp. each exp. (s)
346 305-387 80 000 2 120.0 500

437 374-499 80 000 2 3.7 280

580 477-577/ 110 000 7 1.5 800
583-683

860 665-853/ 110 000 2 0.5 280
867-1040

Group of ESO Garching. This calibration provides a relative
flux calibration with an accuracy of∼10-20% within each spec-
trum. Absolute flux values for our UVES spectrum of αCet
have not been obtained. Finally, multiple exposures of each
setting have been averaged. The resulting signal-to-noise ra-
tios S/N vary across the spectra, and the maximum S/N values
reached for each grating are listed in Table 3.

The correction to heliocentric velocity has been determined
by the pipeline analysis to vhelio=-28.7 km/sec, so that the rela-
tion between arriving wavelength from the star λ 0 and observed
wavelength λobs is λobs = λ0(1 + vhelio/c).

4. Atmosphere models for αCet
We use new, fully line-blanketed spherical, hydrostatic atmo-
sphere models with solar photospheric abundances (Grevesse
& Noels 1993) obtained with version 13 of the PHOENIX code
(Hauschildt & Baron 1999; Hauschildt et al. 1999). The mi-
croturbulence for all our new models is 2 km s−1. The three
most important input parameters for our spherical model are
the effective temperature, the surface gravity, and the stellar
mass. For each model used, we tabulate the flux integrated over
the stellar disc from 300 nm to 1050 nm in steps of 0.001 nm
(for comparison to our high spectral resolution UVES data).
Furthermore, we tabulate monochromatic intensity profiles at
64 viewing angles for wavelengths from 1.8µm to 2.5µm in
steps of 0.5 nm (for comparison to our VINCI interferometric
data).

For comparison, we use as well intensity profiles pre-
dicted by standard plane-parallel hydrostatic ATLAS 9 model
atmospheres from the Kurucz CD-ROMS (Kurucz 1993), as
in Wittkowski et al. (2001, 2004, 2006). The Kurucz CD-
ROMS include tabulated monochromatic intensity profiles for
17 angles in 1221 frequency intervals ranging from 9.09 nm to
160 000 nm. In the range of the VINCI near-infrared K-band
filter, the frequencies are sampled in steps corresponding to
10 nm. These data values are available as grids of effective tem-
perature and surface gravity, and for different chemical abun-
dances and microturbulent velocities. For comparison, we use

VLTI/VINCI 2.2 µm

Mark III 0.8 µm

Mark III 0.5 µm

Mark III 0.5 µm

Model “C”  5.395 mas
a)

b)

Procyon (F5 IV-V)

Wittkowski et al. (2006b) A&A, submitted
Aufdenberg, Ludwig, Kervella (2005) ApJ 633, 424
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Limb Darkening Basics I

NASA

(a) Deeper, hotter layers are visible near 
the disk center

(b) Shallower, cooler layers are visible 
near the disk limb

isothermal atmospheres do not exhibit 
limb darkening

2.3. LINE TRANSITIONS 19

Sν a

b

h
0

I ν

0

a

b

10 sin θ

θ

a

b

Figure 2.4: Solar limb darkening. The viewing angle θ increases with the fractional radius r/R� = sin θ
of the apparent solar disk. The emergent intensity samples shallower layers towards the limb, with smaller
source function. The final drop at r/R� = 1 marks the viewing angle at which the sun becomes optically
thin. Note that substantial decrease of µ = cos θ is reached only close to the limb, for r/R� = sin θ =
(1−µ2)1/2 close to unity (Table 7.2 on page 159). The off-limb extension to this sketch is given in Figure 7.2
on page 148.

– spontaneous radiative deexcitation;
– induced radiative deexcitation;

– collisional excitation;
– collisional deexcitation.

2.3.1 Einstein coefficients

Spontaneous deexcitation. The Einstein coefficient for spontaneous deexcitation is:

Aul ≡ transition probability for spontaneous deexcitation from
state u to state l per sec per particle in state u.

(2.46)

In the absence of collisions and of any other transitions than the ul one, the mean lifetime
of particles in state u is ∆t = 1/Aul s. The corresponding spread in energy is (Heisenberg):
∆E = h/(2π∆t) or ∆ν = γrad/(2π) with γrad ≡ 1/∆t the radiative damping constant.
This “natural” broadening process defines an emission probability distribution ψ(ν−ν0)
around the line center at ν = ν0 that is given by the area-normalized Lorentz profile:

ψ(ν−ν0) =
γrad/4π2

(ν−ν0)2 + (γrad/4π)2
. (2.47)

The Aul coefficient is a summation over the profile, describing the transition probability
for the whole line; the probability per unit of bandwidth is given by Aulψ(ν−ν0) since
ψ(ν−ν0) is measured per Hertz. The spontaneous deexcitation rate per cm3 is given by
the product nuAul.

The emission-profile shape function is discussed in more detail in Section 3.3 on
page 52 ff together with other line broadening processes. The latter are usually much
more important than radiative damping. For a static atmosphere and assuming that each
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Figure 2.4: Solar limb darkening. The viewing angle θ increases with the fractional radius r/R� = sin θ
of the apparent solar disk. The emergent intensity samples shallower layers towards the limb, with smaller
source function. The final drop at r/R� = 1 marks the viewing angle at which the sun becomes optically
thin. Note that substantial decrease of µ = cos θ is reached only close to the limb, for r/R� = sin θ =
(1−µ2)1/2 close to unity (Table 7.2 on page 159). The off-limb extension to this sketch is given in Figure 7.2
on page 148.

– spontaneous radiative deexcitation;
– induced radiative deexcitation;

– collisional excitation;
– collisional deexcitation.

2.3.1 Einstein coefficients

Spontaneous deexcitation. The Einstein coefficient for spontaneous deexcitation is:

Aul ≡ transition probability for spontaneous deexcitation from
state u to state l per sec per particle in state u.

(2.46)

In the absence of collisions and of any other transitions than the ul one, the mean lifetime
of particles in state u is ∆t = 1/Aul s. The corresponding spread in energy is (Heisenberg):
∆E = h/(2π∆t) or ∆ν = γrad/(2π) with γrad ≡ 1/∆t the radiative damping constant.
This “natural” broadening process defines an emission probability distribution ψ(ν−ν0)
around the line center at ν = ν0 that is given by the area-normalized Lorentz profile:

ψ(ν−ν0) =
γrad/4π2

(ν−ν0)2 + (γrad/4π)2
. (2.47)

The Aul coefficient is a summation over the profile, describing the transition probability
for the whole line; the probability per unit of bandwidth is given by Aulψ(ν−ν0) since
ψ(ν−ν0) is measured per Hertz. The spontaneous deexcitation rate per cm3 is given by
the product nuAul.

The emission-profile shape function is discussed in more detail in Section 3.3 on
page 52 ff together with other line broadening processes. The latter are usually much
more important than radiative damping. For a static atmosphere and assuming that each

source function
as a function of
depth

center to limb
intensity profi le
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A Plane Parallel Atmosphere
Center-to-limb intensity profi le 
derived from a series of  slanted
views into a plane parallel 
atmosphere

{0.1% of 
stellar 
radius

z

����cos-1 �
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Center-to-Limb Intensity Profi le

Gray  (1992)
in the blue:
stronger limb darkening

In
te

n
si

ty
 R

at
io

Cosθ

in the red: 
weaker limb darkening

Continuum wavelength dependence
Limb Darkening Basics II

Iλ(τλ = 0, µ = 0.9)

Iλ(τλ = 0, µ = 0.2)
≈ Bλ(T (τλ = 0.9))

Bλ(T (τλ = 0.2))

τ = τ500 nm ≈ τ1000 nm

I500 nm(µ = 0.9)

I500 nm(µ = 0.2)
≈ B500 nm(T (τ = 0.9))

B500 nm(T (τ = 0.2))
=

B500 nm(T = 6390 K)

B500 nm(T = 5430 K)
= 2.23

I1000 nm(µ = 0.9)

I1000 nm(µ = 0.2)
≈ B1000 nm(T (τ = 0.9))

B1000 nm(T (τ = 0.2))
=

B1000 nm(T = 6390 K)

B1000 nm(T = 5430 K)
= 1.55

d Bλ

d T
=

2h2c3

kT 2λ6

ehc/kλT

(ehc/kλT − 1)2

Bλ =
2hc2

λ5(ehc/kλT − 1)

Bλ ≈ 2hc2

λ5(ehc/kλT )
when ehc/kλT � 1

d Bλ

d T
≈ 2h2c3

kT 2λ6(ehc/kλT )

d Bλ1/d T

d Bλ2/d T
≈ λ2

6

λ1
6

ehc/kTλ2

ehc/kTλ1

λ1 = 500 nm

λ2 = 1000 nm

T = 5000 K

d Bλ1/d T

d Bλ2/d T
≈ 3.6

Bλ ≈ 2ckT

λ4
when hc � kλT

d Bλ

d T
≈ 2ck

λ4

1

disk
center

outermost
limb

The change in intensity with 
temperature increases with 
decreasing wavelengthRayleigh-Jeans approx. 

of the Planck function
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Early Observations of Solar Limb Darkening
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1906 - K. Schwarzschild
Derived a center-to-limb
profi le for the Sun with
a radiative equilibrium
temperature structure.
He showed this to be
consistent with
observations, ruling out
an adiabatic equilibrium
temperature structure.  

���������������������

���������������������

������������������

Early Model Limb Darkening 

Adapted from K. Schwarzschild (1906) “Über das Gleichgewicht der Sonnenatmosphäre”  
Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen.  Math.-phys. Kalsse, 295, 41
See translation in D. H. Menzel, Ed., Selected Papers on the TransSelected Papers on the TransSelected Papers on the T fer of Radiation (1966) NY: Dover

Schwarzschild (1906) Models vs. Contemporary Data
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18 CHAPTER 2. BASIC RADIATIVE TRANSFER

Eddington-Barbier approximation. The emergent intensity at the stellar surface
(τν = 0, µ > 0) is given by:

I+
ν (τν =0, µ) =

� ∞

0
Sν(tν) e−tν/µ dtν/µ. (2.43)

Substitution of

Sν(τν) =
∞�

n=0

anτν
n = a0 + a1τν + a2τν

2 + . . . + anτν
n

and use of
� ∞
0 xn exp(−x) dx = n! gives

I+
ν (τν =0, µ) = ao + a1µ + 2a2µ

2 + . . . + n! anµn.

Truncation of both expansions after the first two terms produces the important Eddington-
Barbier approximation

I+
ν (τν =0, µ) ≈ Sν(τν = µ) (2.44)

which is exact when Sν varies linearly with τν . Likewise for the emergent flux:

F+
ν (0) ≈ πSν(τν = 2/3). (2.45)

A formal derivation is given on page 85, a simple one in Exercise 2 on page 225. Figure 2.3
illustrates the Eddington-Barbier approximation simplistically, Figure 2.4 its application
to solar limb darkening, Figure 2.5 its application to line formation at increasing sophis-
tication.

Sν 0

1

2

0 1 2 3 4
0

−τνe

θ I

τν

ν

−τνeSν

ντ

Figure 2.3: The Eddington-Barbier approximation. Left: the integrand Sν exp(−τν) measures the contri-
bution to the radially emergent intensity Iν(τν =0, µ=1) from layers with different optical depth τν . The
value of Sν at τν = 1 is a good estimator of the area under the integrand curve, i.e., the total contribution.
Right: for a slanted beam the characteristic Eddington-Barbier depth is shallower than for a radial beam;
it lies at τν = µ.

2.3 Line transitions

Bound-bound transitions between the lower l and upper u energy levels of a discrete
electromagnetic energy-storing system such as an atom, ion or molecule may occur as:

– radiative excitation;
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2.3 Line transitions

Bound-bound transitions between the lower l and upper u energy levels of a discrete
electromagnetic energy-storing system such as an atom, ion or molecule may occur as:

– radiative excitation;

Linking intensity to depth:  the transfer equation

From Rob Rutten’s excellent lecture notes:
http://www.phys.uu.nl/~rutten/Astronomy_lecture.html

Limb Darkening Basics II

The formal solution to the plane parallel transfer equation:

The outgoing intensity Iν at the surface at the atmosphere (optical depth τν = 0)
is the integral of the product of the source function and e-τν
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2.3 Line transitions

Bound-bound transitions between the lower l and upper u energy levels of a discrete
electromagnetic energy-storing system such as an atom, ion or molecule may occur as:

– radiative excitation;

A graphical representation of the integral.
Area of the shaded region is the integral.

The integral for two different angles:
the intensity for the view normal to the 
surface probes deeper, hotter layers
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2.3 Line transitions

Bound-bound transitions between the lower l and upper u energy levels of a discrete
electromagnetic energy-storing system such as an atom, ion or molecule may occur as:

– radiative excitation;

The Eddington-Barbier Approximation
Limb Darkening Basics III

18 CHAPTER 2. BASIC RADIATIVE TRANSFER
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2.3 Line transitions

Bound-bound transitions between the lower l and upper u energy levels of a discrete
electromagnetic energy-storing system such as an atom, ion or molecule may occur as:

– radiative excitation;

In the EB approximation, the outgoing intensity at a given angle μ=cosθ, is 
the source function evaluated at the optical depth τν = μ. 

a) Looking at the disk center: Iν(θ=0º) = Sν(τν = μ = cos(0º)= 1) = Bν(τν = 1)

b) Looking toward the limb: Iν(θ=60º) = Sν(τν = μ = cos(60º)= ½) = Bν(τν = ½)

18 CHAPTER 2. BASIC RADIATIVE TRANSFER

Eddington-Barbier approximation. The emergent intensity at the stellar surface
(τν = 0, µ > 0) is given by:

I+
ν (τν =0, µ) =

� ∞

0
Sν(tν) e−tν/µ dtν/µ. (2.43)

Substitution of

Sν(τν) =
∞�

n=0

anτν
n = a0 + a1τν + a2τν

2 + . . . + anτν
n

and use of
� ∞
0 xn exp(−x) dx = n! gives

I+
ν (τν =0, µ) = ao + a1µ + 2a2µ

2 + . . . + n! anµn.

Truncation of both expansions after the first two terms produces the important Eddington-
Barbier approximation

I+
ν (τν =0, µ) ≈ Sν(τν = µ) (2.44)

which is exact when Sν varies linearly with τν . Likewise for the emergent flux:

F+
ν (0) ≈ πSν(τν = 2/3). (2.45)

A formal derivation is given on page 85, a simple one in Exercise 2 on page 225. Figure 2.3
illustrates the Eddington-Barbier approximation simplistically, Figure 2.4 its application
to solar limb darkening, Figure 2.5 its application to line formation at increasing sophis-
tication.
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Figure 2.3: The Eddington-Barbier approximation. Left: the integrand Sν exp(−τν) measures the contri-
bution to the radially emergent intensity Iν(τν =0, µ=1) from layers with different optical depth τν . The
value of Sν at τν = 1 is a good estimator of the area under the integrand curve, i.e., the total contribution.
Right: for a slanted beam the characteristic Eddington-Barbier depth is shallower than for a radial beam;
it lies at τν = µ.
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2.3 Line transitions

Bound-bound transitions between the lower l and upper u energy levels of a discrete
electromagnetic energy-storing system such as an atom, ion or molecule may occur as:

– radiative excitation;

a) 

a) 

b) 

b) 
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Wavelength

1000 nm: intensity ratio ~1.5

500 nm: intensity ratio ~2.3

Continuum wavelength dependence (part II)
Limb Darkening Basics IV

solar spectrum
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Approximation
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the same physical depths 
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... in good agreement with observations

*

*Temperature-optical depth relationship  from the 
Harvard-Smithsonian Reference Atmosphere.
See Mihalas “Stellar Atmospheres”  (2nd Ed.) page 
264.

Multiwavelength Limb-darkening Observations

Pierce & Waddell (1961, Mm. R.A.S, 63, 89)

No surprise, since our Sun’s atmospheric 
temperature structure is derived in part 
from limb darkening measurements!
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Solar Limb Darkening and Convection

854 F. Castelli et al.: Notes on the convection in the ATLAS9 model atmospheres

Fig. 11. Upper plot: the ratio Fconv/Ftot as a function of log τRoss in the
Sun for: (a) the SUNK94 model (full line), (b) the standard ML theory
without any modification (crosses), (c) the SUNNOVERC125 model
(no “overshooting”)(dashed line). Lower plot: the T-log τRoss relation
for the (a) and (c) cases

and decreasing electron pressure which cause a growth of the
hydrogen ionization zone.

Table 3 shows which models are affected by convection
for gravities ranging from log g=5.0 to log g=1.0. Furthermore,
for the metallicities [M/H]=0 and [M/H]=−3, it lists the mo-
dels which show the largest difference, at τross=1, between the
Fconv/Ftot computed with the “overshooting” option switched
on and off respectively. The maximum effective temperature of
models affected by the different convection options decreases
with decreasing log g.

Table 3. The parameters of models affected by convection (columns 1
and 2) and the parameters of models which show the largest difference
at log τRoss=0 between Fconv/Ftot computed for the “overshooting” op-
tion switched on and off respectively. Columns 1 and 3 are for [M/H]=0
and columns 1,4 are for [M/H]=−3

Convective Max[ F(conv)
FtotOVER

- F(conv)
FtotNOVER

]
Models at τRoss=1

[M/H]=0 [M/H]=−3.0

log g Teff (K) Teff (K) Teff (K)

5.0 8500-3500 8000-7500 8500-7000
4.0 8000-3500 7500-7000 8000-6000
3.0 7500-3500 7000-6500 7000-5500
2.0 7000-3500 6500-6000 6500-4500
1.0 6500-3500 6000-5500 6000-4000

7. Teff from colour indices (V − K), (B− V ), and (b− y)

In the previous section we showed that some models have a dif-
ferent structure depending whether the “overshooting” option is
switched on or off. In this section we investigate the effect of the
different model structure on the V −K , B−V , and b− y colour
indices, which are often adopted for fixing effective tempera-
tures for cool stars; furthermore, we will try to state whether
the color indices from the “overshooting” models (COLK95) or
those from the “no-overshooting” models (COLNOVER) give
Teff closer to the values derived from the infrared flux method
(IRFM), which is almost model independent.

7.1. The dependence of the synthetic colour indices on the
convection

We computed grids of synthetic colours UBV, uvby, and RIJKL
from models having the “overshooting” option switched off, mi-
croturbulent velocity ξ=2 km s−1, and metallicities [M/H]=0.0
and [M/H]=−3.0. For each gravity, we derived Teff by inter-
polating in the COLNOVER grids for the (V − K), (B − V ),
and (b − y) color indices of the COLK95 grids. In this way,
we may estimate the effect of the convection on the effective
temperatures derived from the color indices. The temperature
differences ∆Teff=Teff over-Teff nover as function of Teff for the
(V − K), (B − V ), and (b − y) indices are shown for different
gravities and solar metallicity in the upper panels of Fig. 13-15.

The largest ∆Teff differences are about 60 K, 100 K, and
170 K for the (V−K), (B−V ), and (b−y) indices respectively.
They occur for Teff and log g between 7500-8000 K and 4.0-
4.5 for (V − K), 6750-7250 K and 3.0-4.0 for (B − V ), 6500-
7000 K and 3.0-4.0 for b − y. Temperatures from the color
indices computed from the “no overshooting” models are lower
than those from color indices computed from the “overshooting
models”. For all the three indices the value of ∆Teff weakly
depends on gravity for Teff<6500 K. For Teff> 6500 K the
effect of the convection increases with increasing gravity.

Castelli, Gratton & Kurucz (1997) A&A 318, 841
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848 F. Castelli et al.: Notes on the convection in the ATLAS9 model atmospheres

Fig. 4a and b. Comparison between ob-
served (points) and computed (full line) so-
lar limb-darkening curves Iλ(cosθ)/Iλ(0).
Observations are from Pierce & Slaughter
(1977) and Pierce, Slaughter & Weinberger
(1977). Computed limb-darkening curves
are from models which differ only for the
“overshooting” option. a it is “on” (SUNK94
model) b it is “off” (SUNNOVERC125
model). The different curves correspond to
different values of cosθ

Table 2. Observed and computed color indices for the Sun

Color Observed Computed Computed
indices SUNK94 SUNNOVERC125

(U − B) 0.1951 0.17 0.18
0.17±0.012

(B− V ) 0.6501 0.67 0.66
0.68±0.0052

0.656±0.0053

(b− y) 0.406±0.0044 0.41 0.397
0.414±0.0033

1 Neckel (1994)
2 Schmidt-Kaler (1982)
3 Gray (1992)
4 Edvardsson et al. (1993)

when SUNNOVERC125 or SUNNOVERC20 models are used
to compute the solar intensities Iλ(cosθ) (Fig. 4b).

A fact to be considered when observed limb-darkening
curves are compared with the computations is that the line opac-
ity is negligible only for few wavelengths, as we can infer from
the analysis of high-resolution spectra (Kurucz et al, 1984).

This implies that the continuum windows selected by Pierce
& Slaughter (1977) and Pierce et al. (1977) may not always
correspond to the real continuum at several wavelengths.

4.3. Color indices

Table 2 compares (U −B), (B−V ), and (b− y) observed color
indices with those derived from the SUNK94 and the SUN-
NOVERC125 models. Owing to the uncertainty in the solar
colors and to the small differences between the SUNK94 and
the SUNNOVERC125 colors we cannot state which model has
to be preferred.

4.4. The Balmer profiles

Comparison of Balmer profiles from BALMER9 with those
from SYNTHE has shown that the metallic lines do not affect
the shape of the wings of the Hα and Hβ profiles. The violet wing
of Hγ predicted by the synthetic spectrum is a little bit broader
than that predicted by BALMER9, owing to the presence of a
strong Fe I line at 432.576 nm.

Observed high-resolution spectra were taken from the Solar
Flux Atlas of Kurucz et al. (1984). We lowered the continuum
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Not So Different from our Sun....

Procyon
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Procyon:  The Visual Binary (P = 40.82 yr)
2432 GIRARD ET AL. Vol. 119

FIG. 3.ÈWFPC2 PC image of Procyon A-B taken 1995.18 with the HST . This 160 s exposure was with the F218W Ðlter. The inner 256] 256 portion of
the PC frame is shown. The position of the primary was determined from a 0.11 s exposure taken moments earlier.

of the frame, well separated from the occulted primary. We
have calculated the A-B separation based on this frame, as
well as another similar exposure from the same night. The
position of the primary was determined by modeling the
di†raction spikes beyond the apodized portion of the mask.
The secondaryÏs position was determined by Ðtting an ellip-
tical paraboloid to its image, Ðtting only those pixels above
an appropriate threshold. The mean separation from the
two frames, at epoch 1995.09, was found to be 90.4^ 0.9
pixels. This includes a correction of ]0.3 pixels to o†set the
bias from the sloping background at the position of the
secondary image, caused by the wings of the primary image.
The 0.9 pixel uncertainty is dominated by the Ðt to the
overexposed di†raction spikes of the primary. It was esti-
mated from the scatter in the Ðtted positions as derived
using various Ðtting techniques and is consistent with the
di†erence in separation values, 0.6 pixels, derived from the
two separate frames.

The pixel scale of the CoCo-NSFCAM combination is
not well known, and thus we have deduced a nominal scale
based on four short exposures of c Vir (STF 1670) observed
in 1995 March with the same instrument. Unfortunately,
the orbit of this bright binary is also not(VA \ VB \ 3.4)
well known, having been last updated (coincidentally) by
Strand (1937) in 1937. Thus, we have undertaken a

redetermination of its visual orbit based on all available
measures contained in the Washington Double Star (WDS)
Catalog (Worley & Douglass 1996),11 supplemented by an
additional speckle interferometric measure made in 1996
February as part of the Yale/San Juan Double Star Project
(Horch et al. 1996). This Ðnal observation strengthens the
relevant ephemerides separation and position angle (P.A.)
of c Vir at 1995.249, making it a true interpolation. Our new
orbit solution for c Vir leads to a CoCo-scale estimate of

pixel~1. Details of this calculation, includ-0A.0566^ 0A.0006
ing the new visual orbit solution of c Vir, are described in
the Appendix. With the above value for the instrument
scale, the CoCo separation of Procyon A-B becomes 5A.12

(1995.09 ;^ 0A.07 P.A.\ 41¡.0^ 1¡.0).

4.2. HST W FPC2 Observations
In 1995 March, a series of observations were made of

Procyon using the WFPC2 Planetary Camera (PC) of the
HST with the intention of accurately measuring the A-B
separation. One such PC frame, a 160 s exposure taken with
the F218W Ðlter, is shown in Figure 3. In it, the secondary is
readily measurable and well separated from the heavily

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
11 Electronic version available at http ://aries.usno.navy.mil/ad/wds.

Girard et al (2000) ApJ 119, 2428

HST/WFPC2 PC image (160 s)  
F218W fi lter

2430 GIRARD ET AL. Vol. 119

event, the two solutions yielded orbital elements that agreed
to within their estimated errors. A large number of high-
residual outliers were discarded from the all-plateÈseries
solution, leaving 599 exposures for the orbit determination.
Figure 1 shows the Ðnal astrometric orbit Ðt to the plate
measures with parallax and proper motion subtracted.

Table 2 lists the derived elements of the astrometric orbit,
along with those obtained by Strand (1951) and by Irwin et

FIG. 1.ÈAstrometric-orbit determination for Procyon A. The points
indicate PDS measures of individual exposures and the curve shows the
least-squares solution for the orbit. The plate measures have been trans-
formed to a common reference system. Only those measures which contrib-
uted to the orbit solution are included. The x- and y-coordinates are
nominally aligned with right ascension and declination.

al. (1992). The Irwin et al. values are those of their combined
astrometric and radial velocity solution, extracted from
their Table 6. The errors listed in the Ðrst column are
formal errors from the least-squares Ðt but are to be viewed
with caution because of the large amount of data trimming
performed. For several of the elements, our values di†er
signiÐcantly from those of Irwin et al. (1992), notably in
semimajor axis, eccentricity, and period, in which there is
actually better agreement with Strand (1951).

As described above, the Ðnal orbital elements were then
applied to the individual plate measures, and the parallax
was determined Ðrst with all of the plate series and Ðnally
with just the USNO plates. These relative parallaxes are
transformed to absolute by applying a correction based on
the mean magnitude of the reference stars (see van Altena,
Lee, & Hoffleit 1995 for details). The resulting absolute
parallax estimates are presented in Table 3, along with that
of the USNO result (Harrington et al. 1993) for their own
plates and the value obtained by the Hipparcos mission
(ESA 1997). Our value is consistent with that of USNO
(within the combined uncertainties), with a formal improve-
ment in accuracy to 1.5 milliarcseconds. This can be attrib-
uted to the use of the PDS to measure these excellent plates.

The Hipparcos parallax di†ers from our value by approx-
imately 1.6 times the combined uncertainties and, in fact, is
in closer agreement with the USNO value. In both the
USNO and Hipparcos investigations, the observation base-
line was short enough that an orbit was assumed, instead of
being solved for. In the case of theHipparcos reductions, the
orbital elements assumed were those of Irwin et al. (1992).
What would be the e†ect on the parallax derived from the
Hipparcos data had one assumed the revised orbital ele-
ments presented here? To answer this question, we
rederived theHipparcos astrometric solution from the inter-
mediate astrometric data that accompany the Hipparcos
catalog CD version and that are also available on the Hip-
parcos Web site.10 The revised parallax solution was per-
formed using the procedures and software described by
Pourbaix & Jorissen (2000). The e†ect of adopting the new
orbital parameters was minimal, decreasing the derived
parallax by a mere 0.1 mas. As one might expect, the e†ect

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
10 At http ://astro.estec.esa.nl/Hipparcos.

TABLE 2

ASTROMETRIC ORBIT ELEMENTS OF PROCYON

Element Strand (1951) Irwin et al. (1992) Present Study

Semimajor axis, aA (arcsec) . . . . . . . . . . . . 1.217 1.179 1.232
^0.002 ^0.011 ^0.008

Eccentricity, e . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.40 0.365 0.407
. . . ^0.008 ^0.005

Inclination, i (deg) . . . . . . . . . . . . . . . . . . . . . . 35.7 31.9 31.1
^0.2 ^0.9 ^0.6

Angle of node, ) (deg) . . . . . . . . . . . . . . . . . 104.3 104.8 97.3
^0.3 ^1.5 ^0.3

Longitude of periastron, u (deg) . . . . . . 89.8 88.8 92.2
^0.3 ^2.0 ^0.3

Period, P (yr) . . . . . . . . . . . . . . . . . . . . . . . . . . . 40.65 40.38 40.82
. . . ^0.15 ^0.06

Periastron passage, T (yr) . . . . . . . . . . . . . 1927.6 1967.86 1967.97
(1968.3) ^0.16 ^0.05

MassA  = 1.497 ± 0.037 M⊙
MassB  =  0.602 ± 0.015 M⊙

Procyon A (F5 IV): Fundamental Parameters
Angular diameter = 5.404 ± 0.03 mas  (Kervella et al. 2003)
Parallax = 285.93± 0.88 mas (Hipparcos: Perryman et al.)
Radius = 2.05± 0.02 R⊙
Log(g) = 3.95± 0.02 cgs
Bolometric fl ux = 17.8 ± 0.9 x 10-9 W m-2

Effective Temperature = 6516 ±87 K

Girard et al (2000) ApJ 119, 2428

BA

@ 3.5 pc, the 13th closest 
star system to the Sun
http://www.chara.gsu.edu/~thenry/
RECONS/TOP100.htm
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Note:  Procyon’s temperature RMS (at τ = 1) 
is 8.2% or 536 K! Compare this to the ±90 K 
uncertainty in the effective temperature! 

Granulation Models for Procyon and the Sun 

Allende Prieto et al (2002) ApJ 567, 544

3-D and 1-D Model Predictions for Procyon’s LD

3-D

3-D

1-D  (MARCS)

1-D  (MARCS)

3-D
Prediction:
1.6 %
angular size
difference
between
1 micron
and 
450 nm

No. 1, 2002 CONVECTION IN SPECTRUM OF PROCYON 561

FIG. 19.ÈLimb darkening for the three-dimensional (rhombi) and one-
dimensional (asterisks) models. Third-order polynomials have been Ðtted
by regular least-squares Ðts to the data.

dimensional models need to be improved, there are prob-
ably other important error sources in our calculated line
proÐles. Departures from LTE are a likely candidate. We do
not observe a larger scatter or a systematic deviation for
low-excitation Fe I lines that one could expect from the
three-dimensional NLTE calculations of Shchukina & Tru-
jillo Bueno (2001), but we notice a signiÐcantly larger
scatter for the iron abundance determined from Fe I lines in
Procyon than in the Sun, and departures from LTE are
expected to grow for warmer stars. Because of the shown
imperfections in the three-dimensional models, the pre-
ferred iron abundance for Procyon is that derived from the
three-dimensional analysis of weak lines : log v(Fe)

_
\ 7.36

^ 0.03 (p \ 0.15) dex.
The main conclusions of our study of the iron abundance

are as follows :

1. The abundances derived from Fe I and Fe II lines are
consistent for both one-dimensional and three-dimensional
analyses, and with a higher coherence for the three-
dimensional model. This implies that departures from LTE,
which should be minimal for Fe II, are likely small. Never-
theless, they could be responsible for a signiÐcant fraction of
the scatter between the abundances retrieved from di†erent
lines, providing a plausible explanation for the larger scatter
observed for Procyon than for the Sun.
2. The di†erences between the iron abundances derived

from one-dimensional and three-dimensional analyses
(setting aside lines stronger than 50 in the case ofmA�
Procyon) are small dex), and the same conclusion([0.05

applies to the solar case. Other stars and elements may
show larger di†erences.
3. Procyon is marginally deÐcient in iron compared to

the Sun by about 0.05 dex.

7. CENTER-TO-LIMB VARIATION

One of the applications of model atmospheres is to derive
limb-darkening laws. These are required, for example, to
correct interferometric measurements of stellar angular
diameters and a†ect directly the otherwise fully empirical
calibrations of e†ective temperature against color indices
(see, e.g., Mozurkewich et al 1991).
Here we compare the center-to-limb variation predicted

by homogeneous models and the three-dimensional simula-
tions. Taking the emerging intensity for di†erent angles at
all di†erent spatial locations, we produce a spatially and
time-averaged intensity for di†erent ray inclinations. Figure
19 shows the predicted limb darkening for the one-
dimensional and three-dimensional models. Two wave-
lengths were selected, 4500 and 10000 Strong di†erencesA� .
are obvious in the plot, the limb darkening being markedly
nonlinear for the inhomogeneous model. We have Ðtted the
data to third-order polynomials by regular least-squares Ðts
(see eq. [6] in Hanbury Brown, Davis, & Allen 1974), and
the results correspond to the solid (three-dimensional) and
dashed (one-dimensional) lines in Figure 19. Lower order
polynomials were inappropriate for the three-dimensional
model atmosphere. Hanbury Brown et al. (1974) calculated
the interferometric correlation factor associated with this
particular limb-darkening law. At 4500 their determinedA� ,
angular diameter for a uniformly emitting disk should be
corrected by factors of 1.081 and 1.064 for the one-
dimensional and three-dimensional cases, respectively. The
one-dimensional correction obtained from an older version
of MARCS (Gustafsson et al. 1975) used by Mozurkewich
et al. (1991) was 1.07 at 4500 The radius and the e†ectiveA� .
temperature of Procyon we derived in ° 4.1 should therefore
be slightly corrected from 2.071 to 2.059 and from 6512R

_to 6530 K, respectively. The correction between three-
dimensional and one-dimensional models, which amounts
to roughly 1.6%, implies a correction to the e†ective tem-
perature of roughly 50 K for a star like Procyon A, showing
the importance of detailed model atmospheres for estab-
lishing a truly empirical scale from measurements ofTeffangular diameters (see, e.g., di Benedetto 1998).

8. ABSOLUTE RADIAL VELOCITY

When discussing measurements of stellar radial veloci-
ties, it is commonly assumed that an observed shift of the
spectral features from their wavelengths at rest can be
directly translated to a velocity projected along the line of
sight. Lindegren, Dravins, & Madsen (1999) have recently
discussed the dangers in doing so, especially when it comes
to precise measurements, pointing out several e†ects that
may need to be considered.
The gravitational shift is proportional to the gravita-

tional Ðeld, and for late-type dwarfsV
g
\ GM/(Rc),

amounts to about 0.5 km s~1. In the case of Procyon A, we
have a special advantage, as its mass, radius, and proper
motion are well determined. The gravitational redshift,
including the blueshift induced by Earth, is V

g
\ 0.436

^ 0.019 km s~1, where we have used the corrected stellar
radius R \ 2.06^ 0.02 (see ° 7). The transverse DopplerR

_

3-D versus 1-D Model
Center-to-Limb Profi les for Procyon
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FIG. 7.ÈTemperature on surfaces of equal optical depths in the convection simulations of Procyon (left panels) and the Sun (right panels). The surfaces
correspond to continuum optical depths at 5000 of 0.3, 1, 3, and 10 from top to bottom. It should be noted that these iso-tau surfaces are highly corrugatedA�
and therefore the temperature contrast is much greater across surfaces of equal geometrical depths. All images share the same maximum and minimum
temperature cuts, which highlights the signiÐcantly larger temperature contrast in Procyon. For each iso-tau surface, the temperature contrast is(Trms/ST T)
given.

computed with the same spectral synthesis code as the
three-dimensional proÐles. Without the convective Doppler
shifts, additional ad hoc broadening in the form of the
micro- and macroturbulence must be invoked in one
dimension in order to obtain correct line widths, with the
former a†ecting the line strengths and the latter a†ecting
only the line shapes. In both cases, Gaussian distributions
are assumed.

4.4. L ine Data
Iron is the best represented element in the spectrum of

late-type stars. Neutral iron has been the subject of a
number of Ðne laboratory works to derive radiative tran-
sition probabilities at Oxford (e.g., Blackwell et al. 1986).
The number of lines measured with high accuracy and in a
homogeneous manner has been enlarged by the work of
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A 3-D  model for Procyon
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More Than One Temperature Structure

Hotter, rising granules have a warmer temperature 
structure than cooler, descending dark lanes. 

The mean 3-D temperature structure differs from a 
1-D model and can be detected interferometrically 
via limb darkening! 
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VLTI/VINCI 2.2 µm

Mark III 0.8 µm

Mark III 0.5 µm

Mark III 0.5 µm

Model “C”  5.395 mas
a)

b)

A 3-D  Models Fits to Procyon at 500 nm, 800 nm, and K-bandodels Fits to Procyon at 500 nm, 800 nm, and K-bandodels Fits to Procyon at 500 nm, 800 nm,

Aufdenberg, Ludwig, Kervella (2005) ApJ 633, 424
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Angular Diameters for Procyon from 1-D & 3-D Model Fits
Models without
  overshooting

Models with
 overshooting{

{
B

A

D

F
C

E

B A
D

F
C E

B A
D F C

E

U:  Uniform Disk

U

U

B:  PHOENIX “B”
A:  PHOENIX “A”
D:  ATLAS “D”
F:   ATLAS “F”
C:  CO5BOLD + PHOENIX
E:   ATLAS “E”

U

EEFC EFCC
EE

Aufdenberg, Ludwig, Kervella (2005) ApJ 633, 424

Note the sensitivity at 
500 nm to the specifi c 
convection treatment

All atmosphere 
models have:

Teff = 6530 K
log(g) = 3.95

but different
convection 
treatments
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Comparing the
Corresponding
1-D and 3-D Model
Temperature
Structures

B:  PHOENIX “B”

A:  PHOENIX “A”

D:  ATLAS “D”

F:   ATLAS “F”

C:  CO5BOLD + PHOENIX

E:   ATLAS “E”

B

A

C

D
F
E

ATLAS

CO5BOLD

PHOENIX

Note: The 3 ATLAS models displayed 
have different convection treatments 
(mixing length, overshooting), but 
otherwise identical stellar parameters.  
Popular limb darkening tables (e.g. 
Claret 2004) do not vary convection 
parameters.   
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Procyon’s Spectral Energy Distribution vs. 1-D and 3-D Stellar Surfaces

GHRS

IUE SWP IUE LWP

STIS

12 component model

1 component model

12 component model

1 component model

Glushneva et al. (1992)u v b y
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In the ultraviolet, we see 
only the hot granules,  
so Procyon’s spectrum  
appears  hotter than its 
effective temperature.  

Another check on the 
3-D nature of Procyon’s 
atmosphere/surface.
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Beyond Plane-Parallel
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TiO Bandhead; Narrow Band Filters

Data:
Quirrenbach
et al (1993)
ApJ, 406, 215

•In the examples thus far, the atmospheric thickness was 0.1% of the 
stellar radius.  All effects due to the temperature structure.

•Ordinary extended atmospheres, M giants, have an atmospheric 
thicknesses of 5% or more.

Spherical Geometry and Atmospheric Extension



θ = cos-1 µ
z

p

r0 r1
r2

r3
rN

z

θ = cos-1 µ

a) plane-parallel case

b) spherical case
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Beyond Plane-Parallel:  Spherical Geometry and Atmospheric Extension

The semi-infi nite nature of 
plane-parallel models means  
that the atmosphere is opti-
cally thick at all angles.

The rays of a spherical model
impact nested shells, of which 
the outer most are optically 
thin.

Drop off characteristic of spherical models.

How “fuzzy” is the limb of a star?
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Spherical Models and Multi-Wavelength Data:  The Case of γ Sge (M0 III)

Spherical Model Yields Consistent  Diameter Across Optical/Near-IR
8 M. Wittkowski et al.: NPOI & VLTI Interferometry of γ Sagittae

Table 3. Details of our VLTI/VINCI observations of γ Sagittae (date
and time of observation, spatial frequency, azimuth angle of the pro-
jected baseline (E of N)), together with the measured squared visibil-
ity amplitudes and their errors. The last column denotes the number
of successfully processed interferograms for each series. The effective
wavelength for our γ Sagittae observations is ∼ 2.19 µm. For each date
of observation, we list the equivalent uniform disc (UD) diameter ob-
tained from only the data of the specific night. Using all data together,
we obtain an equivalent UD diameter of ΘUD = 5.93± 0.02 mas, or an
equivalent FDD diameter of ΘFDD = 6.69 ± 0.02mas.

UT Sp. freq az V2 σV2 #
[1/��] [deg]
28 June 2002, ΘUD = 5.91 ± 0.03mas

05:16:57 131.14 136.63 1.825e-01 8.074e-03 161
05:22:40 130.08 136.65 1.828e-01 8.852e-03 152
05:32:34 128.15 136.73 2.077e-01 7.578e-03 172
06:44:22 111.69 139.42 3.112e-01 1.079e-02 80

8 July 2002, ΘUD = 5.89 ± 0.04mas
05:12:10 124.21 137.05 2.241e-01 7.199e-03 397
05:20:13 122.44 137.27 2.426e-01 7.846e-03 418

11 July 2002, ΘUD = 5.98 ± 0.04mas
03:06:45 142.16 138.28 1.064e-01 1.256e-02 55
05:29:49 117.47 138.08 2.495e-01 8.775e-03 69
05:34:22 116.38 138.31 2.660e-01 9.929e-03 207
05:40:41 114.83 138.64 2.878e-01 8.524e-03 297
05:47:01 113.25 139.02 2.977e-01 1.228e-02 198

15 July 2002, ΘUD = 5.94 ± 0.05mas
04:22:40 128.76 136.70 1.926e-01 6.824e-03 90
04:41:27 124.90 136.98 2.223e-01 1.315e-02 139

8 August 2002, ΘUD = 5.92 ± 0.03mas
03:05:49 125.17 136.95 2.179e-01 7.678e-03 469
03:12:20 123.77 137.10 2.244e-01 9.005e-03 436
03:18:34 122.39 137.27 2.309e-01 7.979e-03 468
03:24:34 121.03 137.47 2.471e-01 1.901e-02 178
04:13:56 108.94 140.21 3.376e-01 1.212e-02 423

12 September 2002, ΘUD = 5.99 ± 0.11mas
01:26:22 116.44 138.29 2.607e-01 1.547e-02 190
01:47:17 111.24 139.54 3.407e-01 4.631e-02 105

18 September 2002, ΘUD = 5.88 ± 0.05mas
00:32:53 123.38 137.15 2.347e-01 1.081e-02 428
00:40:53 121.59 137.39 2.393e-01 1.177e-02 407
00:47:14 120.14 137.61 2.667e-01 1.751e-02 210

Table 4. Fit results of our VINCI data to UD and FDD models.

Model Diameter χ2ν
UD ΘUD = 5.93 ± 0.02mas 0.63
FDD ΘFDD = 6.69 ± 0.02mas 0.63

parameters listed in Table 4. Since our VINCI data cover only
one bandpass and only data of the first lobe of the visibility
function, it is -contrary to our NPOI data- not feasible to con-
strain the limb-darkening effect solely based on these VINCI
data. This is also reflected by equal χ2ν values obtained for UD
and FDD models as well as by the virtually identical model
visibility curves in Fig. 8.

The increased equivalent UD diameter with respect to the
shorter NPOI wavelengths is consistent with the general trend
of decreasing strength of the limb-darkening effect with in-
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Fig. 8. Measured γ Sagittae squared visibility amplitudes obtained
with VLTI/VINCI in June to September 2002, together with the syn-
thetic visibility curves of the best fitting models.

creasing wavelength. A detailed comparison of our data to
model atmospheres follows below in Sect. 4.

Analysis of calibration uncertainties In order to test and ver-
ify the calibration uncertainties that are used in our analysis,
we investigate the night-to-night variation of the obtained di-
ameter values. All derived single nights’ diameter values and
uncertainties are consistent within 1.3σwith the value obtained
from all data together (5.93mas) as well as with the weighted
mean of the single nights’ values (5.92mas).

This confirms that our diameter value is reliable and that
our estimate of uncertainties is realistic. The obtained high-
precision (0.3%) UD and FDD diameter values of ΘUD =
5.93 ± 0.02mas and ΘFDD = 6.69 ± 0.02mas can thus be used
without further uncertainties.

Additional possible systematic errors that are constant over
time scales larger than covered by our analysis, i.e. about 2
months, can not be ruled out. Such systematic errors could in
principle be related to the calibration of the interferometric ar-
ray and the instrument, such as the calibration of the baseline
length or the effective wavelength. Such uncertainties are not
expected to represent a considerable source of error.

4. Comparison to predictions by model
atmospheres

4.1. Employed model atmospheres
We compare our measured visibility data to predictions by the-
oretical model atmospheres in order to calibrate and test these
models, and to derive fundamental stellar parameters of γ Sge.

We use plane-parallel ATLAS9 (Kurucz 1993) as well as
plane-parallel and spherical PHOENIX (Hauschildt et al. 1999)
model atmospheres to calculate synthetic visibility data, as
done in Papers I&II. We refer to the descriptions in Papers
I&II for more details on the employed model atmosphere files
and their use. Differences between ATLAS9 and PHOENIXmod-
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Fig. 5. As Fig. 3, but showing the squared visibility amplitudes on the NPOI CE baseline.
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Fig. 6. As Fig. 3, but showing the NPOI triple amplitudes.

Table 1. Fit results of our NPOI data to models of a uniform disc
(UD) and a fully darkened (FDD) disc. The formal errors of the di-
ameter values are ∼ 0.01mas, additional calibration uncertainties are
∼ 0.06mas, total errors thus ∼ 0.06mas.

Model Diameter Parameter α χ2ν
UD ΘUD = 5.64mas α = 0 11.0
FDD ΘFDD = 6.59mas α = 1 5.6

3. VLTI/VINCI measurements

3.1. VLTI/VINCI observations
The near-infrared K-band interferometric data of γ Sagittae
were obtained with the ESO Very Large Telescope

Interferometer (VLTI, Glindemann et al. 2003), the instrument
VINCI (Kervella et al. 2003), and the two VLTI test siderostats
on June 28, July 8, July 11, July 15, August 8, September 12,
and September 18, 2002. These data are public commission-
ing data released from the VLTI1. The VLTI stations E0 and
G1 forming a ground baseline length of 66m were used for
all our observations. The observations were repeated during
7 different nights spread over more than 2 months in order to
compute the night-to-night variation of the obtained diameter
and thereby to estimate the calibration uncertainty caused by
different atmospheric and possibly instrumental conditions. All

1 http://www.eso.org/projects/vlti/instru/vinci/vinci data sets.html
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Table 5. Results for the fit of ATLAS 9 and PHOENIX model atmospheres to our interferometric VLTI/VINCI and NPOI data sets of γ Sagittae.

Model atmosphere NPOI (526 nm to 852 nm) VLTI/VINCI (2190 nm)
ATLAS 9, plane-parallel, Teff = 3750 K, log g=1.0 ΘLD = 6.18 ± 0.06mas ΘLD = 6.05 ± 0.02mas

χ2ν = 2.2 χ2ν = 0.6

PHOENIX, plane-parallel, Teff = 3750 K, log g = 1.0 ΘLD = 6.11 ± 0.06mas ΘLD = 6.05 ± 0.02mas
χ2ν = 2.3 χ2ν = 0.6

PHOENIX, spherical, Teff = 3750 K, log g = 1.0, M = 1.3M� ΘLD = 6.30 ± 0.06mas ΘLD = 6.30 ± 0.02mas
χ2ν = 2.4 χ2ν = 0.6

ΘRoss = 6.02 ± 0.06mas ΘRoss = 6.02 ± 0.02mas

ter. The shallower temperature gradient of the plane-parallel
PHOENIXmodel leads to a better agreement between the NPOI
and VLTI/VINCI diameters (≈ 1σ difference).

Finally, the spherical PHOENIX model leads to a Rosseland
angular diameter of ΘRoss = 6.02mas for both the NPOI and
VLTI/VINCI data. The different and larger best-fit diameters
for the two datasets for plane-parallel PHOENIX model ap-
pears to be due to model geometry. The agreement of NPOI
and VLTI/VINCI data sets gives confidence in both, the atmo-
sphere models and the accuracy of the results from NPOI and
VLTI/VINCI.

Shape of the visibility function The measured and model-
predicted visibility functions are generally consistent.
However, the obtained reduced χ2ν values for the NPOI data
between 2.2 and 2.4 are above unity, as would be expected
for a perfect match. This indicates differences at the 2σ level
between observed visibility data and the model predictions.

These differences are most evident in (1) a lower second
maximum of the measured visibility function with respect to
the model prediction on the EW baseline (Fig. 3), and (2) a
flattened measured visibility function with respect to the model
predictions at the blue end on the CW baseline (Fig. 4). It is
not yet clear if and by how far these deviations of measured
and synthetic visibility functions indicate different details of
the limb-darkening effect at visual spectral channels, or if they
are caused by additional calibration uncertainties that are not
included in the error bars. In particular the flattening of the
measured visibility function at the bluest spectral channels on
the CW baseline can most likely be explained by additional
calibration uncertainties of our NPOI data, as the instrumental
transfer function for these data exhibits a drop which may not
be fully compensated.

At optical wavelengths including all our NPOI spectral
channels, TiO absorption bands are very important for the mod-
elling of atmospheres of cool giants. It has been shown that the
use of different line list combinations of TiO and H2O leads
to significantly different model structures and spectra, in par-
ticular in the optical where TiO bands are important (Allard
et al. 2000). A possible explanation for differences between
our visibility data and the model predictions could thus also
be mismatching opacity tables for the TiO bands and/or a mis-

matching spatial structure of the layers where TiO molecules
reside.

The obtained diameter values in Tab. 5 are not affected by
these observed discrepancies of the details of measured and
model-predicted visibility function since the best-fitting diam-
eter for any given model file is mostly constrained by the posi-
tion of the first minimum and the global shape of the visibility
curve.

It is remarkable that the ATLAS9 and PHOENIXmodels with
parameters listed in Tab. 5 lead to measurable differences of the
predicted visibility values for the visual spectral channels of
NPOI (Figs. 3-6). Similarly different models lead to identical
visibility predictions for the (broad) K-band even in the second
lobe as shown in Paper II. This illustrates that the use of nar-
rower spectral channels and the use of the visual wavelength
range provide stronger constraints on the limb-darkening effect
than observations in the broad K-band.

Model atmosphere fluxes Fig. 9 shows the measured flux of
γ Sge from Alekseeva et al. 1997 in the wavelength range from
0.4-1.0µm, i.e. covering the NPOI range used in this paper.
Also shown are the predictions by the model atmospheres with
parameters listed in Tab. 5. The limb-darkened 0% diameter
valuesΘLD derived from the fit to the interferometric data were
used to scale the model SEDs. The spectral resolution of the
model SEDs is convolved to the resolution of the data used,
i.e. to 10 nm. The model-predicted flux curves based on the
three considered models are well consistent with the general
shape of the measured flux, while the detailed description of the
spectral bands and features differs between the different models
and the measured values. These differences can most likely be
explained by the treatment of TiO absorption lines which are
important for the visual wavelength range and difficult to model
(Allard et al. 2000), as mentioned in the paragraph above.

Deviations from circular symmetry Differences between data
and models are also observed for the closure phases (Fig. 7).
The observed smooth variation of the closure phases from 0
to π instead of the expected instantaneous flip may indicate
a small deviation from spherical symmetry as already men-
tioned in Paper I. As our maximum spatial resolution reaches
2.7mas, and the stellar disc has a size of ΘRoss = 6.02mas,
the stellar disc is well resolved with 2.2 resolution elements

Wittkowski et al. (2006a) A&A, submitted
All atmosphere models have: Teff = 3750 K, log(g) = 1.0
but different geometries



Spherical Models are parameterized by:  

Teff, log(g), Mass or Radius

Two stars:  

same Teff & log(g), different Mass Teff is not well-defi ned in a spherical 
atmosphere , so a reference radius must 
be chosen.

One such radius:  the Rosseland Radius.
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Spherical Geometry:  More Parameters,  More Model-Dependent Results

Fundamental 
Effective Temperature

Bolometric Flux
(corrected

for extinction)Angular
Diameter

(corrected for
limb darkening)

follows from:

distance
luminosity radius

diameter correction extinction correction

luminosityluminosity
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2005). For each considered bandpass separately, the synthetic
PHOENIX spectrum was broadened by convolution with a rota-
tional profile using v sin i=3 km/sec, which is the mean value
for M 0 giants (Munari et al. 2001). It was also broadened with
a Gaussian profile to match the spectral resolution of the obser-
vation given in Tab. 3. Due to possible residuals of αCet s̓ ra-
dial velocity, and residuals of the synthetic line positions, small
offsets between the synthetic and observed wavelength scales
can remain. We have used the IDL routine crscor from the
IUE library (http://archive.stsci.edu/iue) to cross-correlate the
observed and synthetic spectra for each bandpass used and to
derive remaining wavelength shifts. The resulting wavelength
shifts as listed in Tab. 5 are of the order of 0.01Å (correspond-
ing to 0.6 km/sec at 5000Å) and are small for the purpose of
our comparison.

Comparison of observed and synthetic spectra An absolute
flux calibration of our UVES spectra was not obtained, lead-
ing to an unknown scale factor between observed and synthetic
spectrum. We have determined by a standard least squares fit
the best scale factor f to match observed and synthetic spec-
tra in two bandpasses blueward and redward of each central
bandpass. For a cool giant, we cannot find good continuum
bands close to the considered central wavelengths. The band-
passes used for this adjustment have a standard width of 4Å
and standard central wavelengths -6Å and +6Å with respect to
the central wavelength, and inevitably contain spectral features
as well. The resulting χ2

ν value between observed and synthetic
spectrum was calculated for each central bandpass. The nor-
malised factors fnorm and the χ2

ν values are listed in Tab. 5.
The variations of fnorm are generally consistent with the rela-
tive uncertainty of the flux calibration of our UVES spectrum
of 10-20% for each spectrum as quoted in Sect. 3. In addition to
the direct χ2 comparison between observed and synthetic spec-
trum, we calculate the ratio between measured and predicted
equivalent width Wobs/Wmodel as a measure of the consistency
of the integrated line strengths. The equivalent width is, sepa-
rately for synthetic and observed spectrum, derived by integrat-
ing the spectrum over the central bandpass after normalisation
to unity using the integral of the red and blue bandpasses.

Fig. 3 shows the final comparison of observed and synthetic
spectrum for each considered bandpass. Our PHOENIX model
qualitatively well describes the measured spectrum around all
selected features. We have inspected a number of additional
features across the total wavelength range of our UVES spec-
trum and find comparable agreement. However, on the detailed
level of the high spectral resolution obtained, measurement and
model prediction exhibit differences that dominate the resulting
χ2
ν value in Tab. 3. These differences include different strengths

of individual lines, line positions, and features that appear in
the observed spectrum but not in the synthetic spectrum and
vice versa.

The integrated quantity Wobs/Wmodel has a mean value of
0.80 and standard deviation 0.16 (excluding the 3683.06 Å Fe I
bandpass where the blending of different spectral features is
strongest), i.e. the observed spectral features have overall a
lower strength than predicted by the model.
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Fig. 4. Correction factors from the 0% LD diameter ΘLD to the
UD diameter based on our favourite PHOENIX model with parame-
ters Teff=3800 K, log g=1, M/M�=2.3. The dashed line denotes the
Rosseland diameter ΘRoss with respect to the 0% intensity diameter
ΘLD, which is 0.968 for this model. The thin grey line shows the full
resolution of our PHOENIX model file (5Å), and the solid black line is
reduced to a resolution of 20 nm.

A variation of model parameters log g, and M within the
uncertainties that remain from the comparison to our VINCI
data do not lead to significant changes of Fig. 3 and the χ 2

ν and
Wobs/Wmodel values in Tab. 3. These parameters can thus not be
further constrained by the comparison to our UVES spectrum.
A variation of Teff (model values 3750 K, 3800 K, 3850 K,
3900 K; other model parameters unchanged) allows us to es-
timate the effective temperature of αCet to T eff ≈3820± 50 K
both based on the χ2

ν or the Wobs/Wmodel values as a function
of Teff . This estimate is based on the comparison of observed
and synthetic spectral lines/bands and is consistent with the es-
timate based on the best fitting diameter derived from the inter-
ferometric data and the bolometric flux derived from available
spectrophotometry as described above.

There are three major limitations to a stronger constraint
of the model parameters. Firstly, an absolute flux calibration of
the UVES spectrum was not obtained, and the relative flux cal-
ibration within each spectrum reaches a precision of not better
than 10-20%. Secondly, for cool giants, the selected spectral
features are not isolated and the bandpasses used are inevitably
contaminated by several other lines; nearby true continuum
bandpasses are not available. Finally, the total differences be-
tween observed and synthetic spectrum for our bandpasses, as
characterised by the χ2

ν values in Tab. 5, are dominated by de-
tailed effects other than the main model parameters T eff , log g,
and M.

4.5. Comparison of model prediction to previous
diameter measurements

Several UD diameter measurements of αCet based on long-
baseline interferometry have previously been obtained (see
Sect. 1). Here, we use our favourite PHOENIX model of αCet
(Teff=3800 K, log g=1, M/M�=2.3, solar chemical abundance,
ΘLD=12.60 mas) to predict the UD diameter at the previously
used bandpasses. The correction factor from the 0% (LD) di-

Wavelength [nm]

U
D

 D
ia

m
et

er
/L

D
 D

ia
m

et
er

160 CHAPTER 7. ATMOSPHERES OF PLANE-PARALLEL STARS

so that dKν/dz ≈ (1/3) dBν/dz = (1/3) (dBν/dT ) (dT/dz) and (7.58) gives:

1
κ
≈

� ∞

0

1
κν

dBν/dT

dB/dT
dν ≡ 1

κR
. (7.60)

Thus, at sufficiently large depth the Rosseland extinction acts as flux-weighted mean
extinction that regains the simple grey form (7.44) of the transport equation for radiative
equilibrium. Stellar RE–LTE interiors therefore have temperature stratification

T (τR) = Teff

�
3
4
τR +

3
4
q(τR)

�1/4

(7.61)

where the Rosseland optical depth τR has

dτR = −κRρ dz. (7.62)

This equation regains the simple stratification of the grey RE atmosphere in (7.45) for
stellar interiors, but at the cost of having to evaluate all κλ in the computation of τR. The
radiation has depth dependence

J(τR) = S(τR) = B(τR) =
σ

π
T 4(τR) =

3
4
[τR + q(τR)] F, (7.63)

again with the Hopf function q(τR) ≈ 2/3.

7.3.4 Line blanketing

Actual stellar atmospheres are not grey except for Thomson scattering. They contain
narrow-band spectral lines and edges in which the extinction varies rapidly over huge
amounts. How do these affect the actual temperature stratification of an atmosphere in
radiative equilibrium?

Backwarming. The simplest effect is the line blocking in the deep layers where the
observed continuum originates. The presence of strong lines means that much less flux
is transported at their frequencies through this layer, because the radiation field remains
(nearly) isotropic for large τν and locally enclosed at the line frequencies. To first order,
it doesn’t matter whether the line extinction consists of true absorption or scattering; in
both cases the overlying layer is more opaque at the line frequency than it would have
been otherwise. A few photons leak through when the line is a scattering one, making the
blocking slightly less effective for scattering lines.

Compared to a star without lines there is less frequency bandwidth available for the
flux. The spectrum-averaged flux per unit bandwidth must be larger, which implies a larger
local temperature. In addition, the temperature gradient must be slightly steeper to push
the radiation through the atmosphere employing the remaining continuum windows. In
the emergent spectrum the continuum between the lines is therefore higher than for a star
without lines. An estimate of the effect is given by defining f as the fraction of the total
flux that is blocked by lines. The ratio of the flux F � for the blocked case to the unblocked
flux F is then: � ∞

0 F �
ν dν� ∞

0 Fν dν
=

F �

F
=

(σ/π)T �
eff

4

(σ/π)Teff
4 = 1− f (7.64)

so that
Teff = (1− f)−1/4 T �

eff ≈ (1 + f/4)T �
eff . (7.65)
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Spherical Models and the Rosseland Diameter

Wittkowski et al. (2006b) A&A, submitted
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Rosseland Radius: Radius at which        is unity 

See Mihalas “Stellar Atmospheres” (2nd Ed.), sec. 3-2. 

Outermost radius of model
(spherical LD diameter)

 Rosseland mean radius

Spherical Model Limb Darkening Correction

Predicted uniform disk (UD)
to limb-darkened (LD) disk ratio
(at 20 nm resolution)
for α Ceti (M1.5 III)

Note that standard limb 
darkening tables (e.g. 
Claret 2004) are based 
on plane-parallel models, 
even  for giant stars   
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Odds and Ends



Aufdenberg et al. (2006) ApJ, 645, 664
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Limb Darkening vs. Gravity Darkening

Vega Model (i = 5 degrees)

Vega Model (i = 90 degrees)

Observed  SED
Bohlin and Gilliland (2004) 

Gravity darkening:  Intrinsic to the star,
a pole-to-equator effective temperature gradient 
resulting from rapid rotation.  Local  Teff  on surface 
correlates with local gravity (e.g., Teff  ∝ g¼)

Limb darkening:  An observer-dependent effect in 
which the intensity across a stellar surface varies due to 
a radial or depth-dependent temperature gradient.

Pole-on view

Equator-on view

Note: In the equator-on view, the hottest region 
(the pole) is also the most limb darkened.  

Therefore, the brightest patch of the equator-on 
view is slightly below the pole and fainter by ~10%

Rapidly Rotating Model 
with Intensity Contours
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 Stars Are Not Blackbodies
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For details please see Aufdenberg et al. (2006) ApJ, 645, 664
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Synthetic Visibilities in 2-D (for stars lacking azimuthal symmetry)

– 10 –

The intensity vectors Iλ(µ) are linearly interpolated (in the log) at µ(x, y) around the grid

square,

I00
λ = Iλ(Tj , gl, µ(x, y))

I10
λ = Iλ(Tj+1, gl, µ(x, y))

I11
λ = Iλ(Tj+1, gl+1, µ(x, y))

I01
λ = Iλ(Tj , gl+1, µ(x, y)).

Next, the intensity is bilinearly interpolated at the local Teff and log(g) for each (x, y) position

in the map:

Iλ(x, y) = Iλ[Teff(x, y), g(x, y), µ(x, y)]

= (1 − a)(1 − b) I00
λ + a(1 − b) I10

λ

+ ab I11
λ + (1 − a)b I01

λ (17)

where

a = (Teff(x, y) − Tj)/(Tj+1 − Tj)

b = (g(x, y) − gl)(gl+1 − gl)

Finally, a Delaunay triangulation is computed (using the IDL routine TRIGRID) to regrid

the intensity map Iλ(x, y), originally gridded in ϑ and ϕ, onto a regular 512x512 grid of points

in x and y. The coordinates x and y have the units of milliarcseconds and correspond to

offsets in right ascension and declination on the sky (∆α,∆δ) relative to the origin, the

subsolar point.

4.2. Synthetic Squared Visibility Computation

Due to the lack of symmetry in the synthetic intensity maps, we evaluate a set of

discrete 2-D Fourier transforms in order to generate a set of synthetic squared visibilities

comparable to the CHARA/FLUOR observations. The first step is to compute the discrete

Fourier transform for each wavelength at each of the spatial frequency coordinates (u, v)

corresponding to the projected baseline and orientation of each data point (see Table 1).

The mean (u, v) coordinates for each data point, in units of meters, are converted to the

corresponding spatial frequency coordinates (uk, vk) in units of cycles per arcsecond for each

wavelength λk. The Fourier transform,

V 2
λ (u, v) =

�� ∞

−∞

� ∞

−∞
SλIλ(x, y)ei2π(u x+v y) dx dy

�2

(18)
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is approximated by the integration rule of Gaussian quadrature (e.g., Stroud & Secrest 1966;

Press et al. 1992)

V 2
k (uk, vk) ≈

�
N�

i=1

Ai

N�
j=1

AjSkIk(xi, yj) cos(2π(ukxi + vkyj))

�2

+

�
N�

i=1

Ai

N�
j=1

AjSkIk(xi, yj) sin(2π(ukxi + vkyj))

�2

(19)

where Sk is the wavelength discretized value of the instrument sensitivity curve Sλ, and Ai,

Aj and xi, yj are the weights and nodes of the quadrature, respectively. For our square grid,

the x− and y−coordinate nodes and weights are indentical. The 2-D Gaussian quadrature

is performed with a version of the IDL routine INT 2D modified to use an arbitrarily high

number of nodes. The intensity at wavelength k, Ik(x, y), is interpolated at (xi, yj) from the

regular 512×512 spacing to the quadrature node points using the IDL routine INTERPOLATE

which uses a cubic convolution interpolation method employing 16 neighboring points. The

synthetic squared visibility is normalized to unity at zero spatial frequency by:

V 2
k (0, 0) ≈

�
N�

i=1

Ai

N�
j=1

AjSkIk(xi, yj)

�2

. (20)

We find N = 512 provides the degree of numerical accuracy sufficient in the case of a

2-D uniform disk (right circular cylinder) to yield V 2 values in agreement with the analytic

result,

V 2
k (uk, vk) =

�
2J1(πθ

�
u2

k + v2
k)/(πθ

�
u2

k + v2
k)

�2

(21)

(where J1 is the first order Bessel function of the first kind, θ is the angular diameter of the

uniform disk and B is the projected baseline), to better than 1% for V 2 > 10−3. We use the

IDL function BESELJ for our J1 computations. For V 2 � 10−4, near the monochromatic first

and second zeros, the numerical accuracy of the quadrature deteriorates to 10% or worse.

The bandwidth-smeared V 2 minimum is at ∼ 10−3, so we find this quadrature method yields

squared visibilities which are sufficiently accurate for our task, however observations with an

even larger dynamic range (Perrin & Ridgway 2005) will require more accurate methods.

To test the 2-D Gaussian quadrature method in the case where no analytic solution is

available, we computed the 2-D Fast Fourier Transform (IDL routine FFT) of a brightness

map (see Figure 3). First, we compared the results of the 2-D FFT to the analytic uniform
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and second zeros, the numerical accuracy of the quadrature deteriorates to 10% or worse.

The bandwidth-smeared V 2 minimum is at ∼ 10−3, so we find this quadrature method yields

squared visibilities which are sufficiently accurate for our task, however observations with an

even larger dynamic range (Perrin & Ridgway 2005) will require more accurate methods.

To test the 2-D Gaussian quadrature method in the case where no analytic solution is

available, we computed the 2-D Fast Fourier Transform (IDL routine FFT) of a brightness

map (see Figure 3). First, we compared the results of the 2-D FFT to the analytic uniform
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disk, equation (21). To reduce aliasing we find it necessary to “zero pad” the brightness map.

With 12-to-1 zero padding (the 512 × 512 brightness map placed at the center of a larger

6144× 6144 array of zeros) we find the 2-D FFT has very similar accuracy to the 512-point

Gaussian quadrature: better than 1% down to V 2 � 10−3 inside the second null. For the

brightness map shown in Figure 3, the 2-D FFT and Gaussian quadrature methods agree

to better than 0.5% down to V 2 � 10−3, inside the second null. We find the computational

time required to evaluate equation (19) at 25 (uk, vk) points for 185 wavelengths is ∼ 6 times

faster than the evaluation of the 185 zero-padded 2-D FFTs.

4.2.1. Bandwidth Smearing

Once we have computed V 2
k (uk, vk) for the 185 wavelength points, we proceed to compute

the bandwidth-smeared average squared visibility V (B, λ0)
2,

V (B, λ0)
2 =

� ∞
0
V (B, λ)2 λ2 dλ� ∞

0
V (0, λ)2 λ2 dλ

. (22)

This integral is performed by the IDL routine INT TABULATED, a 5-point Newton-Cotes formu-

la. The λ2 term is included so that the integral is equivalent to an integral over wavenumber

(frequency) where

λ−1
0 =

� ∞
0
λ−1 S(λ) Fλ dλ� ∞
0
S(λ) Fλ dλ

, (23)

is the mean wavenumber. This simulates the data collection and fringe processing algorithm

used by FLUOR. In the discretized integrand, V (B, λk)2 is equivalent to V 2
k (uk, vk) where

B = 206264.8λk

�
u2

k + v2
k, with λk in units of meters and uk and vk in units of cycles per

arcsecond.

4.3. Synthetic Spectral Energy Distribution Construction

To construct synthetic SEDs for Vega from the Roche-von Zeipel model, 170 radiation

fields were computed from the same model grid used to construct the K’ band intensity

maps. The wavelength resolution is 0.05 nm from 100 nm to 400 nm and 0.2 nm from 400

nm to 3 µm and 10 nm from 3 µm to 50 µm. The higher resolution in the ultraviolet is

needed to sample the strong line blanketing in this spectral region. From the resulting grid
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Fig. 8. Average temperature map of HD 12545 in spherical projection. The map is constructed from averaging four of the six individual maps
from Fig. 5a–f. Note the comparison with the projected solar disk in the upper left corner. The small panels to the right plot the temperature
profiles for the warm and cool spot along longitudinal and latitudinal cuts through their central position, respectively.

ever observed is the unspotted magnitude of the star can be
severely wrong, and would produce a false areal spot coverage
for HD 12545.

Our Doppler images recovered a gigantic cool starspot. With
a linear extension of 12×20 solar radii, it is 60 times larger than a
very large sunspot group (≈230,000 km as observed on Sept. 4,
1998; Schleicher & Wöhl 1998) and appears 10 times larger than
the projected solar disk. Its area is thereby 10,000 times the area
of the largest sunspot group. It is clearly non-symmetric with
respect to the rotation axis and its central longitude is approxi-
mately 180◦ different to the warm spot; the cool spot is located
on the hemisphere facing away from the secondary star. Because
the rotation of HD 12545 is synchronized to the orbital motion,
we may suspect that these spot positions are persistent active
longitudes. Such an activity persistency has been found for other
RS CVn binaries, e.g. for II Peg (Berdyugina et al. 1998), and
could be tested with further Doppler images of HD 12545. If
true, it could be interpreted as being due to a magnetic field
connection with the red-dwarf secondary, which itself should
be fully convective and thus harbor a magnetic field as well,
and thus resembling the interacting magnetospheres originally

discussed by Uchida & Sakurai (1985) to explain the activity of
RS CVn binaries.

HD 12545 is currently the star with the longest rotation pe-
riod that has been mapped and shows no polar cap-like spot but
an asymmetric spot craddling the pole. This might hint toward
a relation with the long stellar rotation period of HD 12545 (or
the low equatorial rotational velocity). A relation between the
emerging latitudes of magnetic flux tubes and the stellar rota-
tion period is predicted by the models originally put forward by
Schüssler et al. (1996). For a single flux tube in a rotating star,
the effect of the Coriolis force over the buoyancy force becomes
smaller the longer the rotation period. The net force is then un-
able to deflect a magnetic flux tube off the radial rising path and
toward the stellar rotation axis, which leads to predominantly
mid-to-low latitude spots in case of a main-sequence star. How-
ever, if the convection zone is deep enough, as expected for a
K0 giant, moderate rotation rates are already sufficient to deflect
magnetic flux closer to the rotation poles.

There are still two puzzles with this scenario and HD 12545
left to be solved. First, the models of Schüssler et al. (1996)
assume an equatorial-plane symmetry of the flux-tube gener-
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Betelgeuse model by Bernd Freytag

Super starspots via Doppler Imaging
Strassmeier et al. (1999) A&A 347 225

rotating 5 M� models of Sackman & Anand (1970) can be
compared with models of the same mass from our SCF code.
Sackman & Anand have actually presented three slightly dif-
ferent 5M�models. Their Models VI and VII (one with and one
without radiation pressure) had the chemical composition X ¼
0:67, Z ¼ 0:03, while their Model VIII (without radiation pres-
sure) had the chemical composition X ¼ 0:71, Z ¼ 0:02. Their
models were constructed using essentially the same equation
of state and nuclear energy generation data as were used in
our models, but their opacities were of an earlier vintage. Since
there was considerable scatter in the properties of their three
sets of nonrotating models, we have chosen to concentrate here
on the comparison with the model closest to ours in chemical
composition, namely, their Model VIII. The luminosity of our
nonrotating 5 M� model is about 10% lower than that of their
nonrotating Model VIII; the radius of our model is about 1%
smaller, the central temperature is about 2% lower, and the
central density7 is about 2% higher. On comparing our uni-
formly rotating 5 M� model having the so-called critical an-
gular velocity (see Table 1) with their Model VIII in the same
state of rotation, we have found excellent agreement in the

properties of the two rotating models relative to their respective
nonrotating reference models. Sackman & Anand found a re-
duction in luminosity of 7.1%, we found 6.9%; they found
an increase in equatorial radius of 46.8%, we found 46.6%;
they found a decrease in polar radius of 2.3%, we found 2.4%;
they found a decrease in central temperature of 0.5%, as did
we; they found an increase in central density of 2.5%, we found
2.1%; they found an equatorial velocity of 495 km s�1, we
found 498 km s�1.
Comparisons with the models of differentially rotating stars

obtained by other investigators can provide tests of our method
in cases where the rotational kinetic energy is significantly higher
than that found in uniformly rotating models. However, the mod-
els obtained by the SCF methods of Bodenheimer (1971) and
Chambers (1976) are available only for upper main-sequence
stars. Since we wish to demonstrate our method for lower main-
sequence models, we limit our comparisons to the 3M�models
of Clement (1978, 1979). Although Clement used essentially
the same equation of state and nuclear energy generation data
as we did, his chemical composition (X ¼ 0:70, Z ¼ 0:03) and
opacities (Cox & Stewart 1970) differed. Moreover, a mixing-
length treatment of the convective envelope was included in
Clement’s models but not in ours. The law of rotation used by
Clement is mathematically equivalent to the one we use, with

7 In Table 2 of Sackman & Anand (1970), the column of values for log �c
has apparently been mislabeled ‘‘log Pc.’’

Fig. 1.—Contours of level surfaces in the meridional plane (x, z) for six of the models listed in Table 1. From the surface inward, the level surfaces enclose
fractions of the total mass as follows: M (r̃)=M ¼ 1:000, 0.995, 0.950, 0.500. The fractional radii in the equatorial plane (r̃=Re) of these level surfaces for the various
models are as follows: (a) 1.00, 0.64, 0.43, 0.18; (b) 1.00, 0.66, 0.46, 0.22; (c) 1.00, 0.17, 0.12, 0.06; (d ) 1.00, 0.71, 0.54, 0.30; (e) 1.00, 0.72, 0.56, 0.32; and ( f )
1.00, 0.61, 0.37, 0.11. The numbers above the model in each panel denote the total mass M and the equatorial radius Re (rounded from the table). For reference, the
respective radii of the 3 M� and the 6 M� nonrotating models are R0 ¼ 1:97 and 2.92 R�. The six models shown are defined by the total mass and two rotational
parameters (M, � , �) as follows: (a) 3 M�, 3.78, 6.8742; (b) 6 M�, 3.0, 4.57; (c) 6 M�, 3.0, 9.0491; (d ) 6 M�, 3.5, 4.9915; (e) 6 M�, 4.5, 5.0441; and ( f ) 6 M�, 4.5,
11.4.

JACKSON, MacGREGOR, & SKUMANICH256 Vol. 156

Rapid rotators with differential rotation 
Jackson et al. (2005) ApJS 156, 245
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Summary

High-precision interferometry allows us study fundamental aspects of stellar structure. 

Even geometrically thin atmospheres have subtle effects (convection!) that can be 
probed. Standard limb-darkening tables donʼt include this, be careful.

Multi-wavelength observations are crucial for studying stellar structure.

In the blue, observations are more sensitive to stellar structure: �Bλ/�T rules!

Spherical models required for consistent, high-precision diameters of giants.

Many fascinating stellar surfaces waiting to be imaged interferometrically.
Hereʼs to closure phases!
    

Questions Please!

Michelson Summer School 2003 slides here: http://msc.caltech.edu/workshop/2003/2003_MSS/10_Thursday/aufdenberg.pdf


