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Goals of this talk:

1. Learn to think in terms of wavelets.

2.  Learn how to calculate the interference of wavefronts
for any optical system.

3. Learn how to separate astrophysical from instrumental effects.

4. Hear about coronagraphs and speckles.

Note: We discuss optical methods (λ < 10 µm) of wavefront
detection here (homodyne detection).
We do not discuss radio methods (heterodyne detection).
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Photons and Waves
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Basic photon-wave-photon process
We see individual photons.  Here is the life history of each one:
Each photon is emitted by a single atom somewhere on the star.
After emission, the photon acts like a wave.
This wave expands as a sphere, over 4π steradians (Huygens).
A portion of the wavefront enters our telescope pupil(s).
The wave follows all possible paths through our telescope 

(Huygens again).
Enroute, its polarization on each path may be changed.
Enroute, its amplitude on each path may be changed,.
Enroute, its phase on each path may be changed.
At each possible detector, the wave “senses” that it has followed 

these multiple paths.
At each detector, the electric fields from all possible paths 

are added, with their polarizations, amplitudes, and phases.
Each detector has probability = amplitude2 to detect the photon. 
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Photon………..wave…..………...photon
1x

1y

1z

Ex

Ey

1 count
detected

1 photon 
emitted

E(x,y,z) = 1xExsin(kz-wt-px) + 1yEysin(kz-wt-py)
where the electric field amplitude in the x direction is    

sin(kz-wt-px) = Im{ ei(kz-wt-px) }
and likewise for the y-amplitude.

At detector, add the waves from all possible paths.
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Fourier optics vs geometric optics

Fourier optics (or physical optics) describes ideal diffraction-
limited optical situations (coronagraphs, interferometers, 
gratings, lenses, prisms, radio telescopes, eyes, etc.):

If the all photons start from the same atom, and follow the same
many-fold path to the detectors, with the same amplitudes & 
phase shifts & polarizations, then we will see a diffraction-
controlled interference pattern at the detectors.

In other words, waves are needed to describe what you see.

Geometric optics describes the same situations but in the limit 
of zero wavelength, so no diffraction phenomena are seen. 
In other words, rays are all you need to describe what you see.
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Huygens wavelets

Wavelets align here, and make nearly flat 
wavefront, as expected from geometric optics.

Wavelets add with various
phases here, reducing the 
net amplitude, especially
at large angles.  

Portion of large, 
spherical wavefront
from distant atom.

Blocking screen,
with slit.
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Huygens’ wavelets --> Fraunhofer --> Fourier transform
The phase of each wavelet on a surface
Tilted by theta = x/f and focused by the
Lens at position x in the focal plane is

The sum of the wavelets across the 
potential wavefront at angle theta is

All waves add in phase here

The net amplitude is zero here

The net amplitude mostly 
cancels, but not exactly, 
here
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Fourier relations: pupil and image
We see that an ideal lens (or focussing mirror) acts on the 

amplitude in the pupil plane, with a Fourier-transform
operation, to generate the amplitude in the image plane.

A second lens, after the image plane, would convert the 
image-plane amplitude, with a second Fourier-transform, 
to the plane where the initial pupil is re-imaged. 

A third lens after the re-imaged pupil would create a 
re-imaged image plane, via a third FT.

At each stage we can modify the amplitude with masks, stops, 
polarization shifts, and phase changes.  These all go into the 
net transmitted amplitude, before the next FT operation.
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Summation of wavelets

Aout u,v( )= 1
λf

Ain∫ x, y( )e− ik(xu+yv ) / f dxdy

where

A(x, y) 2 = energy /area = Intensity

Born and Wolf (7th edition, p. 428) define the wavelet summation
integral as the Fourier-transform relation between amplitude in 
the pupil Ain(x,y) and amplitude in the focal plane Aout(u,v).

Image amplitude = Sum of wavelet amplitudes

Simplify: (1) 2D→1D;  (2) coef.= 1;  (3) u/f = θ = angle in focal plane.  
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Derive 
single-

telescope 
response to 
point source
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Single telescope again
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Derive interferometer (2-tel.) response
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Binary star interferograms

Model interferogram for a 
binary star, with well-separated 
fringe packets.

Observed interferogram of a
very wide-spaced binary.
CCD detector, no filter, 
IOTA interferometer, 1996 data.
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Derive uniform disk response
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Uniform disk: 
interferograms
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Van Cittert-
Zernike
theorem
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Michelson’s 
stellar 

interferometer
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Image-plane interferometer
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Pupil-plane interferometer
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Colors in interferogram
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Nulling

Nulling interferometer 
(Bracewell)

Stellar interferometer 
(Michelson)

Bright output      Nulled output

mixed outputs

Star:

Planet:

Star:

Planet:
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Theta2 nulling
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Theta4 nulling
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Multiplexing in the image plane
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Multiplexing in the pupil plane

FOV < Θtel
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Golden rule

Output pupil must be a scaled 
version of input pupil in order
to obtain a wide field of view.
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Pupil densification
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Instrumental effects: 1
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Instrumental effects: 2
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Filter and interferogram shapes

K-band filter
transmission

K-band 
interferogram
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Measuring visibility
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Strehl: 1

Strehl ratio is approximately  
S = e-ϕ2  = exp(-ϕ2)

where ϕ is the rms phase error across a wavefront.

Observed visibility is the product of 3 terms:

Vobserved = SatmosSinstrumVobject

Instrumental Strehl ratio is the product of many terms:

Sinstrum = SservoSflatSalignSdiffractionSfluxSoverlapSvibrationSwindowSpolarization
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Strehl: 2

Atmospheric variance, with tip-tilt removed 
by a servo system with bandwidth v/πD, is

ϕ2 = (0.134 + 0.096)(D/r0)5/3(λ0/λ)2

Wavefront flatness variance from mirror surfaces is 
ϕ2 =  ϕ1

2 + … + ϕn
2

Mirrors are often specified in terms of surface peak-to-valley
where an empirical relation is       

PV = 5.5 RMS
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Polarization and visibility

S and P refer to the electric vector components 
perpendicular and parallel to the plane of incidence.
For a curved mirror, these axes vary from point to point. 
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Visibility reduction factor
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Single-mode fiber optics
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Injecting 
starlight 

into a fiber
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Integrated optics: 1
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Integrated optics: 2
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Image-plane Coronagraphs:
a Very Quick Introduction
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Current ground-based coronagraph examples

Ref:  McCarthy & Zuckerman (2004); Macintosh et al (2003)

20 arcsec radius
circle

K~20 mag
Bkgd objects

7 arcsec wand

J~21 mag
Bkgd object



44

Classical Coronagraph

Ref.:  Sivaramakrishnan et al., ApJ, 552, p.397, 2001;    Kuchner 2004.

L(u)·[M(u)*A(u)]~0L(x)*[M(x)·A(x)]~0

u

u

u

u

x

x
x

x

A(u)

A(x)

M(x)
MA

M*A

L(u)

L[M*A]
L*[MA]

aperture

image
mask

Lyot
stop

detector
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Band-limited (1 - sin x/x) mask

FT(1 - sin x/x) =
delta(u) + rect(u) 

Convolution

Lyot stop blocks 
bright edges

Zero transmission
of on-axis star

Amplitude of 
on-axis star = 1 ei0
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Image-plane coronagraph simulation

Ref.: Pascal Borde 2004

1st
pupil

1st
image
with
Airy 
rings

mask, 
centered 
on star
image

2nd
pupil

Lyot
stop,
blocks 
bright 
edges

2nd 
image,
no star,
bright
planet
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Perturbation #1: 
ripples and speckles
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Phase ripple and speckles
Suppose there is  height error h(u) across the pupil, where 

h(u) = Σn ancos(2πnu/D) + bnsin(2πnu/D)  = ripple
The amplitude across the pupil is then

A(u) = eikh(u) ≈ 1 + ik[Σn ancos(2πnu/D) + bnsin(2πnu/D)]

In the image plane at angle α the amplitude will be 
A(α) = ∫ A(u) eikαu du

= δ(0) + (i/2) Σn [(an-ibn)δ(kα-Kn) + [(an+ibn)δ(kα+Kn)] 
where we use K = 2π/D.     The image intensity is then
I(α) = δ(0) + (1/4) Σn (an

2+bn
2) [δ(kα-Kn) + δ(kα+Kn)] = speckles

at α = ±nλ/D

If we add a deformable mirror (DM), then an→an+An and bn→bn+Bn
Commanding An=-an and Bn=-bn forces all speckles to zero.
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Phase + amplitude ripple and speckles
Suppose the height error h(u) across the pupil is complex, where 

h(u) = Σn (an+ian')cos(Knu) + (bn+ibn')sin(Knu)  = ripple
i.e., we have both phase and amplitude ripples (= errors).

The image intensity is then
I(α) = δ(0) + (1/4) Σn [(an+bn’)2 + (bn-an’)2 ] δ(kα+Kn) 

+ [(an-bn’)2 + (bn+an’)2 ] δ(kα-Kn)] = speckles

If we add a deformable mirror (DM), and command  
An = -(an-bn’) and Bn = -(bn+an’) 

Then we get 
I(α) = δ(0) +  Σn [(bn’)2 + (an’)2 ] δ(kα+Kn) ← bigger speckles

+ [ 0 + 0 ] δ(kα-Kn)] ← smaller (zero) speckles

So in half the field of view we get no speckles, 
but in the other half we get stronger speckles.
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Phase ripple and speckles

No DM:

With DM:

Phase ripples 
from primary
mirror errors

Polishing errors
on primary

Speckles generated 
by 3 sinusoidal
components of the
polishing errors

Pupil plane

Image plane

Image plane
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So, we discussed these topics:

1. Thinking in terms of wavelets.

2.  Calculating the interference of wavefronts
for any optical system.

3. Learning about astrophysical vs instrumental effects.

4. A teaser about coronagraphs and speckles.




