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CCD Quantum Efficiency

• Advantages of CCDs
– High quantum efficiency.

• Responsive QE 
– RQE = N(detected)/N(incident)

25% > RQE > 95%
• Detective QE

– DQE = (S/N)out/(S/N)in

– Spatially stable silicon substrate.
– Reasonable resolution

Typically 10-20 microns
– Modest format size (4k x 4k)

• Disadvantage
– Need to enhance blue response 

with down-converting phosphors.
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Front-side versus Back-side Illumination
• Front-side illumination

– The electrical connections interfere 
with the access of the photons to the 
sensitive area

• Potential for systematic “pixel-
phase” position errors

• Reduced sensitive area > lower QE
• QE(max) ~ 25%

• Back-side illumination
– Thick semiconductor 

• Photons are absorbed and charge 
carriers created too far from the 
depletion layer

• Thinning the backside to ~10 
microns can yield QE ~ 95%!
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Charge-Transfer Efficiency
• Reiss (STScI-ACS 2003-009)

– If the transfer of charge is not 100% from pixel to pixel 
during the read out, then CTE loss occurs.

– CTE loss occurs from radiation damage, temperature 
of CCD and scene characteristics (# counts, extent of 
image, local and global  background)

• CTE 1k chip 2k 4k
• 0.999975 3% 5% 10%
• 0.9999975 0.3% 0.5% 1%

– Minimization of CTE loss:
• “pre-flashing” chip 
• “charge injection” in front of image readout direction
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CTE versus Pixel Flux
• Charge-transfer efficiency effects on Astrometry and Photometry
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Saturation Effects
• CCD Full- Well/Saturation level

– Full well is proportional to the 
volume of a pixel, i.e. the area 
times the thickness of the 
depletion region.  

• Typical: Manufacturer says 
full well = 250,000 e-1; 
using a 16-bit A/D 
converter (216 - 1 = 65535 
bits)

– Gain = 250,000/65535 
= 3.81 e -1 / ADU 
(analog-to-digital 
units)
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How the Flat-Field Effects Astrometry
• Types of Flat fields

– Median Flat-Field (MFF) from 
several exposures in each filter. 

• Median gets rid of cosmic ray 
hits and bad data.

– Super-sky flat - median average all 
exposures during a night.  

• Random star locations in field-
of-view average out in median.

• Generally low S/N due to low 
sky background.

– Dome-diffuser flat - plexiglass 
diffuser in front of objective or 
corrector in a Schmidt.  

• Good for wide fov.  
• High S/N since it is a dome flat 

and bright lights.
• Zhou, Burstein, et al. 2004, AJ 

127, 3642.

S-S flat taken with wire objective
grating (45o) in place.  Diagonal streaks
are due to partial overlapping of the
stars in the deep and dense exposures.
Fluctuations in the S-S flat are ~8%.
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Micro- and Macro-Noise
• Micro-noise and Macro-noise - useful concepts

– Macro: σ2 = (1/Ν)ΣΝ
ι=1(<S> - Si)2

– Micro: σ2 = [1/2∗(Ν−1)]ΣΝ−1
ι=1(Si+1 - Si)2

• Macro-noise includes the large-scale non-
uniformities (or errors) while Micro-noise 
includes only the point-to-point fluctuations
– Astrometry is limited primarily by Micro-noise

• Noise in defining the image center

– Photometry is limited primarily by Macro-noise
• Zero-point variations in the scale over the field
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Signal-to-Noise
• References

– Newberry 1991, PASP 103, 122.
– Newberry 1994, CCD Astronomy
– Howell, “Handbook of CCD Astronomy”, p. 53

• S/N sets the fundamental limit on our ability to measure 
the signal from the target.

• Bias, Dark and Flat-field corrections all contribute to 
degrading the S/N in the measured signal.



11

CCD Photometry

• References
– “Astronomical CCD Observing and Reduction 

Techniques”, S. B. Howell, ed., 1992, ASP 
Conf. Series 23.

– Stetson, P. 1990, PASP 102, 932.
– DaCosta, G., 1992, ASP Conf. Series 23, 90.
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Surface Photometry
• Surface Photometry

– Generally trying to determine the surface brightness of a 
galaxy that is very faint in the presence of a “bright” sky.

– Goal is to trace the galaxy out to, say, ≤ 1% of sky level.
• I(x,y) = Galaxy(x,y) + Sky(x,y
• Need Sky(x,y) to better than 1% accuracy, or σs(x,y) ≤ 0.01*S(x,y)
• Macro noise is critical here, due to possible poor flat-field.
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Sky Background
• Sky background and its error

– <S> = corrected mean sky
– σm = macro-noise in the sky

• σm = Poisson + Read Noise + Large scale background fluctuations.
• σm = [ S + Nr

2 + ??]0.5

– σ(<S>) = error of mean sky
– X = % error desired in <S>

• X = σ(<S>) / <S>, e.g. 1%
– σ(<S>) = σm / N0.5 , or X =  σm / [N0.5 * <S>]
– N = {σm / [X * <S>]2

» <S> = 100 counts, Nr = 5 counts, X = 1%, then N=121 pixels
» <S> = 100 counts, Nr = 5 counts, X = 0.1%, then N=12,100 pixels
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Stellar Profile
• King, PASP 83, 199, 1971

– Stellar profile observed through atmosphere.
• Sky background near star is affected by presence of stellar wings

~Gaussian image core

r-2 wings

mag.

r (arcmin)

log I

r (arcsec)
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Aperture Photometry
• Aperture photometry

– DaCosta, G. ASP Conf. Series 23, 90, 1992.
• Select an aperture of radius r that contains the image and sum all 

of the pixels that fall within the aperture
– Isum =  I* + <S>
– What radius should be used to include all of the stellar flux?

» Remember that the King stellar profile extends many arcsec.
– What about the sky within the aperture?
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Aperture Corrections
• Stetson, P. PASP 102, 932, 1990
• Large r to include all star light, 

but:
– Includes other stars
– Adds sky noise 

• All stars have the same psf, so all 
psfs scale with the # photons
– psf is constant, except for 

• optical aberrations 
• seeing variations over field (short 

exposures)
– CCD is linear, except for 

• saturation and CTE
– dm = -2.5 log10I2/I1

• dm = -2.5 log X
– Constant aperture 

correction, dm.

“Optimal” aperture = 1.35 FWHM 
Ap. corr. = 0.2 mag for a Gaussian

Star image must be accurately centered 
in aperture for this to work.
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Photometric Errors
• Sky background

– Select many star-free spots and average the results
– Probability plot analysis of background and scale to aperture

• Error in photometry
– So = total stellar signal, but noise and read-out noise are per pixel

• σ2 = So + n(Ss + Nr
2)

– mag = mo - 2.5 log10So

– σm = σmo - 2.5 (log10e)σ(So)/So

– σm = σmo - 1.086 (1/So) σ(So)
– σm = σmo - 1.086 (1/So) {So + n(Ss + Nr

2)}0.5

» = Zero pt. Error  +  Poisson  +  Sky  +  Read-out noise
» So is fixed, so the larger n, the greater the contribution of 

the sky and read-out noise is to the error.
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Sky Noise
• Sky noise

– Ideally the histogram 
of pixel values is 
unimodal and we 
determine the mode.

– Mode is usually 
difficult to determine 
and poorly defined.

– Kendal & Stuart, p.40, 
1977

• mean-mode = 3(mean-
median)
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Fitting PSFs
• King found the stellar profile to be approximately Gaussian in the core:

– G(x) = (σx√2π)-1 exp-{0.5[(x - xc)/σx]2}
• ∫xG(x) = 1.0
• G(x = xc) =  0.3989
• G(x = xc ± σx) =  0.2420:  0.607 height at x =  xc

• G(x = xc ± fwhm/2) =  0.1995: one-half the height at x = xc

– Gaussian doesn’t fit in wings, so other functions are added
• Modified Lorentzian: L(x) = C*{1 + (x2/σ2)ß}-1

• Moffat function: M(x) = C*{1 + (x2/σ2)}-ß

– C = constant

– Not even those are perfect so a table of corrections (H(x,y) is added to 
give the final model PSF:

• PSF(x,y) = [a*G(x,y) + b*L(x,y) + c*M(x,y)] * [1 + H(x,y)]
• DAOPHOT and IRAF: See Stetson, P. in PASP 102, 932, 1990.
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Photometric Passbands
• Passbands and filters

– UBVRI: Bessell PASP 102, 1181, 1990
– JHKLM: Bessell & Brett PASP 100, 1134, 1988
– IR: Astrophys. Quant. IV (AQ4), A. N. Cox, ed. Ch. 7.1-7.7
– Visual: AQ4 Ch 15.3
– Asiago Database on photometric systems (ADPS)

• http://www.pd.astro.it/Astro/ADPS/
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Photometric Surveys
NPM (N)
SPM (S)

UCAC
(All sky)

2MASS
(All sky)

DENIS 
(South)

Sloan 
(NG cap)

Band

14.314.0Ks

15.1H
15.816.5J

16.5R
17.5V
18.5B

20.5z
18.521.3i

22.2r
22.2g
22.0u
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Image Centering
• References

– van Altena and Auer: in “Image Processing 
Techniques in Astronomy”, p. 41, 1975

– Auer and van Altena: AJ 83, 531, 1978
– Lee and van Altena: AJ 88, 1683, 1983
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Centroids versus Image Centers
• Given an intensity distribution, S(x,y)

– The Centroid, center of mass or 1st moment of the distribution.
• See: van Altena and Auer: in “Image Processing Techniques in 

Astronomy”, p. 41, 1975
• <x> = ∑x,y{xi*[S(x,y) - B]} / ∑x,y[S(x,y) - B],
• <y> = ∑x,y{yi*[S(x,y) - B]} / ∑x,y[S(x,y) - B]

– where B is the assumed sky background around the image. 
– The centroid is very sensitive to the adopted sky background, but 

it is also works well for very faint images.
– The Image Center

• See: Auer and van Altena: AJ 83, 531, 1978
• and Stetson in DAOPHOT manuals.
• The Marginal distributions are defined by:

– ρx(x) = Ny
-1∑ySo(x,y)

– ρy(y) = Nx
-1∑xSo(x,y)
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Marginals and Image Centers
• Derivative-search centers

– Take the x-marginal, ρx(x), 
in the middle panel.

• Image crowding noted 
where ρx(x) increases at 
edges of the diagrams.

– The derivative of the x-
marginal, ρ’

x (x),  is in 
lower panel.

• Peaks at ± gaussian radius, 
Rx = FWHM / 2.36

• Zeros at image center and 
inflection points in ρx(x) that 
indicate image crowding.
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Univariate Gaussian
ρx(x) = ax + bx(x-xc) + [1 + cx(1.5t - t3)]hxexp(-0.5t2)

• Univariate Gaussian
– t = (x-xc) / Rx
– hx = Nx / [Rx√2π]
– Rx = Gaussian radius
– bx = sloping background
– cx = skewness of image
– Generally take bx = cx = 0.0, 

since there is usually a high 
degree of correlation between 
the odd terms and this 
degrades the image center 
precision, i.e. use a symmetric 
Gaussian for the fit.



26

Bivariate Gaussian
F(x,y) = Doexp(-0.5r2 / R2) + B

• Bivariate Gaussian
– Lee and van Altena: AJ 88, 1683, 

1983
– Do = image height at center
– r2 = (x-xc)2 + (y-yc)2

– R = Gaussian radius
– B = background

• Precision
– #1 Bivariate
– #2 Univariate
– #3 Centroid

• Convergence
– Inverse order of precision, i.e. the 

centroid is most stable, especially 
for faint images.
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Dealing with Saturated Images
F(x) = a[2tan-1bc]-1{tan-1 [b(x-xo+c)] - tan-1 [b(x-xo-c)]} + do

• Saturated photographic image 
usually has a flat top and Gaussian 
fits poorly

• Two arctangent functions fit very 
nicely

• Stock, J. ~1997
– a  = image height above 

background
– do = background 
– c  is proportional to image 

width
– b = scale factor for image slope 

and gradient
• Winter (Ph.D. thesis 1995) - a 

generalized Lorentz profile also 
works well.
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Image Center Precision Estimators
• Precision of the image center

– h = Nx / [Rx√(2π)] = central height of the Gaussian
– R = FWHM / 2.36 = Gaussian radius
– N = integral under the univariate function
– σ1 = standard error of fit to the univariate function, i.e. the 

dispersion of the intensities around the best fit to the marginal 
distribution.

– σh = standard error of the central height of the Gaussian
– ε = (2/π1/2) (σ1/h) R1/2

– ε = (2π1/4) (σ1/N) R3/2

– ε = √2 (σh/h) R based on photometric precision
– ε = √2  R (S/N)-1 based on photometric precision
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Summary of Astrometry & Photometry (1/2)
• Maximum Photometric precision

– Emphasis here is on the total number of counts
– Fitting function is not too important, since a look-up table must be 

used to correct to psf.
– Stetson: PASP 102, 932, 1990
– DAOPHOT and IRAF manuals
– DaCosta ASP Conf. Series 23, 90, 1992

• Under-sampled images, e.g. HST
– Anderson & King: PASP 112, 1360, 2000
– Anderson & King: PASP 115, 113, 2003
– Druckier, et al. AJ 125, 2559, 2003
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Summary of Astrometry & Photometry (2/2)
• Maximum Astrometric precision

– Emphasis must be placed on the image-profile gradients
– Use functional fits to the image with weighting by the derivatives 

of the function
• Auer and van Altena: AJ 83, 531, 1978
• Lee and van Altena: AJ 88, 1683, 1983

– For saturated images
• Stock (1977) arctangent functions allow for saturation in 

photographic images

• Quick and Dirty Astrometry
– Centroids

• van Altena and Auer: in “Image Processing Techniques in 
Astronomy”, p. 41, 1975


