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* Elements of Inference

® Inference problems contain two indispensable elements:
VA * Data x€X (known)
% ® Parameters 6© (unknown)
% ® The challenge is to go from one to the other
* Inference: x=0

® [The other direction, 6=x, 1s also important: This is the
predictive problem. Generally results 1n a probability
distribution on x, given 0]
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* Models

® Any inference procedure requires two kinds of models:
¢ * Physical Model
% * Statistical Model

*
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* Physical Model

® Describes the physics and geometry of the data-taking
4+  process, from the origination of the signal in the object being
studies, through its propagation to the detector, the optics of
the telescope, and the detection process

® May involve unknown parameters that describe the physics

® Unknown parameters are often nuisance parameters: We
aren’t interested in them for themselves, but they have to
be estimated in order to measure the parameters we do care
about

® Example: linear model relating error-free time ¢ to error-free
position x and unknown velocity a and offset b. We may care
only about a; then b would be a nuisance parameter

X=at+b
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e Statistical Model

® Relates the values of the observations x, that we actually
+  observed (recorded) to the physical model and the parameters
S that describe the data taking process (e.g., variances)

® Models the random nature of the data collection process
® Random arrival times of photons (Poisson process?)
* Atmospheric fluctuations (Gaussian process?)
* Unsteadiness in telescope pointing, etc.

® Described by the likelihood function

® Example: Error of recorded data has normal distribution:

1 1 i i
ps =[] o5 -4
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e Statistical Model

® The probability of observing a particular data set (vector) x,
+  depends on both the physical and statistical models:

i% p('xO l Ha B)
® Here, p is the sampling distribution, the probability of

observing data x,, given the true parameters describing both
the physical and statistical models, which are included in the
vector 0 (state of nature). B is background information.

*

® In the previous example, with x, = {x\"}, t={t""}

p(x,10,t)=p(x,la,b,0,t)

1
Hra exp(
0={a,b,0}

Db x’)) )

Parameter Estimation 7/26/05



e Likelihood Function

® Once we have observed a particular data set x,, the fact that
e we might have observed a different set x°, but didn’t, should
e be irrelevant to our inference from x,, to 6.

® X, 1S not regarded as a random variable. It is known exactly,
even though it arose from a random process.

® The important thing is how p(x,|6) varies with 0, given the
actual x, that we have observed.
p(x,10)=L(O;x,)
® The function L(6; x,) 1s the likelihood function. It measures
how well each possible value of 0 1s supported by the actual

data x, we have observed.
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e Likelihood Principle

® The Likelihood Principle says that the likelihood function
e contains all of the information about 6 that is contained in the

e data x,.

® This means that inference should be based on p(x,|6),
considered as a function of 6.

® Values of 6 that make the likelihood big are better
supported by the data than values of 6 that make it small

* Therefore, to first order we would like to concentrate on
values of 6 that make p(x,|0) big.
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e Maximum Likelihood

® This leads to the first method of inference: Maximum
e Likelihood

Y¢ ® Simply choose the value 6 of O that maximizes p(x,l0)

" ° 0 might not be unique
® (In normal case, justifies minimizing chi-square)
® Note that considered as a function of 6, p(x,|6) 1s not a
probability density.
® It 1s not normalized

* It cannot be used as if 1t were a probability in order to
estimate the errors in 6
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e Maximum Likelihood

® The method of maximum likelihood has many satisfying
s+  features:

Y¢ ©® Itiseasy to apply (you just need a program to maximize
some arbitrary multivariate function, and these are readily

* available)

* In many, even most situations involving parameter
estimation, 1t gives satisfactory values of 0

® However
® In some circumstances it gives bad answers
* It does not estimate the error in 0

® There are both logical and practical objections to
estimating the error by standard methods
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* Estimating the Error

® A practical method of estimating the error 1s to note that the
¢ procedure that takes us from x, to 6 generally displays Has a

v function of x,:
* 0=f(x,)
® But then we can consider generating a large bootstrap sample
of x from the sampling distribution, assuming that 61is the
true value of 0:
{x}=(x,%5,...,xy)~ p(x| 6)
® To each x, there corresponds a 6
9;’ = f (Xl-)
® It is plausible that the distribution of these 6, displays the
uncertainty in our estimated 60
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* Estimating the Error

® This rather roundabout method of looking at the error in 6 has
o 8 drawback: It violates the Likelihood Principle!

v * It 1s computed using data that were not observed, but
might have been observed, instead of considering only the
* data that were actually observed

® Nonetheless, the 1dea is commonly used and (usually) gives
reasonable answers.

® In special cases (e.g., linear models with normally distributed
errors) this error analysis can be done exactly, rather than by
bootstrap simulation as outlined. But simulation can always
be used.

* Exact or simulated, it still violates the Likelihood Principle
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My choice: Use probability theory directly.
This goes by the name Bayesian inference
Requires additional input (background information)

If we have a prior probability density s(6) on 6, indicating
what we know about 6 before looking at the data, we can turn
p(x,16) 1nto a probability density on &

POl P 1OTO) _ p(x,10)7(0)
[ p(x, 10)m(0)d6  p(x,)

This 1s Bayes’ Theorem. a(0) 1s the prior distribution of 6, or

prior. p(0lx,) 1s the posterior distribution of 6, or posterior.

The denominator 1s just a normalizing constant.

® (@isregarded as a random variable; x, 1s not
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* Maximum a Posteriori Inference

® Suppose we choose a prior, for example, s( 0)cconstant.

PAe ® This particular prior cannot be normalized; but as long as
e the posterior 1s normalized, this 1s not a problem

® Then the posterior distribution will be proportional to the
likelihood (considered as a function of 6):

p(61x,) % p(x, 10)7(8) * p(x, |6)

® By maximizing this posterior distribution we obtain the
Maximum a Posteriori Estimate of 0, also known as MAP

*

® Since the posterior density 1s a genuine probability density, it
can be used directly to analyze the error distribution of 6

® Would be like using the likelihood to get the error
distribution. It legitimizes this notion.
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* Using the Posterior Distribution

® 95% Credible Interval: 95% of the total probability lies
4+  between the two red lines

o MAP
* v
Marginal distribution
of 6, p6;1x,)= [ p(61x,)do_,
/ 6.,
/ \
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* The Importance of Priors

® However, mi( 8)cconstant 1s not reasonable under most
circumstances
pA

e ® You may have significant prior information about 6. If so,

it would be foolish not to use it. For example, you may
% already have a good idea where 6 lies. You can put a prior
distribution s(6) on O that reflects that information

— For example, we already have a good 1dea of the value
of the Hubble constant, so to ignore this information
might be problematic

® There may be other constraints that provide important
prior information, e.g.,

— Fluxes are non-negative
® Without prior information, use objective priors
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* The Importance of Priors

® An example is when measuring the distance to an object. If
we believe that the particular kind of object is distributed
PAg : : . .
uniformly in space (out to some limit, say), then before you
At even look at the data, you ought to regard the distribution in
" the distance s to be distributed proportionally to

7(s)ds «< s°ds

® Failure to recognize this leads to the so-called Lutz-Kelker
bias, which was recognized by Trumpler and Weaver 1n the

1950s but only became widely understood when Lutz and
Kelker rediscussed it in the 1970s

* Lutz and Kelker’s discussion was not based on Bayesian
priors; but the Bayesian method forces one to consider this
when setting up the problem

* The Lutz-Kelker prior is an objective prior
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* Hierarchical Bayes Models

® A prior distribution may depend on other unknown
+  parameters not mentioned in the likelihood. If so, these new
S unknown parameters will themselves need priors

® In general any unknown parameter needs a prior

® Thus for example with the likelihood p(x,|6), the prior may be
7(0|0) so that we also need a prior 71(0), obtaining a posterior
distribution (excluding the normalizing factor)

p(0,0 1 x,)x p(x,10)x(0|0)m(0)

® The hierarchical Bayes idea provides a very rich class of
statistical models that enables the investigator to model the
problem of interest more closely

Parameter Estimation 7/26/05 21



* Model Selection

® One may be interested in a class of models with differing
S numbers of parameters
v ® For examples, polynomials of unknown rank, e.g.,
x=at+b+yt>: Do we need the term in y?
* e Maximum likelihood has difficulty with this
® Methods are basically ad hoc

® The Bayesian approach is straightforward. If m denotes the
model, then the posterior probability of 6 and m 1s given by

p(O,mlx,)x p(x,10)x(0 | m)m(m)
® The posterior probability of a model m 1s given by integrating

out &
p(m|x0)=fp(9,m|x0)d6
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* Model Averaging

® Conversely, none of the models being compared may be
S believable, as for example when polynomials are being used
to approximate some unknown function. In this case one can
W make estimates of the unknown parameter 6 by model

% averaging:
p@1x,)="Y p(6.m!x,)

® This allows us to avoid committing to a particular m, but
instead to allow the analysis to weight the contributions of
each individual model by the posterior probability of the
model

m,: x=at+b
Versus
o 2
m, :x=at+b+yt
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* Simulation

® In practice, it has been very difficult to evaluate the
normalizing constant required to produce a normalized
posterior distribution

In the past 15 years, it has become possible to avoid this
* problem by using computationally intensive simulation to
draw a sample from the posterior distribution

® Thus we replace the posterior distribution p(0 lx,) by a sample
{0} =(6,,0,,...,0 )~ p@lx,)

® Once we have the sample we can compute the inferences
directly from the sample, e.g.,

0=E®)~ %EQ.
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* Simulation

® The methods for simulation are beyond the scope of this talk;
The simplest are

* v ® Importance sampling
® Acceptance-rejection sampling
* e More generally we have Markov chain Monte Carlo (MCMC)
® Gibbs Sampling
® Metropolis-Hastings sampling
® Other important methods are
® Reversible-jump MCMC
* Metropolis-coupled MCMC (MCMCMC=[MCJ?)

® The key idea 1s that one does not need to know the
normalizing constant in order to draw the sample
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