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Elements of Inference

• Inference problems contain two indispensable elements:
• Data x∈X (known)
• Parameters θ∈Θ (unknown)

• The challenge is to go from one to the other
• Inference: x⇒θ

• [The other direction, θ⇒x, is also important: This is the
predictive problem. Generally results in a probability
distribution on x, given θ]
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Models

• Any inference procedure requires two kinds of models:
• Physical Model
• Statistical Model
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Physical Model

• Describes the physics and geometry of the data-taking
process, from the origination of the signal in the object being
studies, through its propagation to the detector, the optics of
the telescope, and the detection process

• May involve unknown parameters that describe the physics
• Unknown parameters are often nuisance parameters: We

aren’t interested in them for themselves, but they have to
be estimated in order to measure the parameters we do care
about

• Example: linear model relating error-free time t to error-free
position x and unknown velocity a and offset b. We may care
only about a; then b would be a nuisance parameter

! 

x = at +b
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Physical Model

• Describes the physics and geometry of the data-taking
process, from the origination of the signal in the object being
studies, through its propagation to the detector, the optics of
the telescope, and the detection process

• May involve unknown parameters that describe the physics
• Unknown parameters are often nuisance parameters: We

aren’t interested in them for themselves, but they have to
be estimated in order to measure the parameters we do care
about

• Example: linear model relating error-free time t to error-free
position x and unknown velocity a and offset b. We may care
only about a; then b would be a nuisance parameter

! 

x = at +b

Accurate modeling is important!
For example, in Jay Anderson’s 
problem: Centroiding is sensitive
to the PSF model adopted
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Statistical Model

• Relates the values of the observations x0 that we actually
observed (recorded) to the physical model and the parameters
that describe the data taking process (e.g., variances)

• Models the random nature of the data collection process
• Random arrival times of photons (Poisson process?)
• Atmospheric fluctuations (Gaussian process?)
• Unsteadiness in telescope pointing, etc.

• Described by the likelihood function
• Example: Error of recorded data has normal distribution:
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Accurate statistical models are
also important!

Not all data are normally
distributed!
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Statistical Model

• The probability of observing a particular data set (vector) x0
depends on both the physical and statistical models:

• Here, p is the sampling distribution, the probability of
observing data x0 given the true parameters describing both
the physical and statistical models, which are included in the
vector θ (state of nature). B is background information.

• In the previous example, with
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Likelihood Function

• Once we have observed a particular data set x0, the fact that
we might have observed a different set x´, but didn’t, should
be irrelevant to our inference from x0 to θ.

• x0 is not regarded as a random variable. It is known exactly,
even though it arose from a random process.

• The important thing is how p(x0|θ) varies with θ, given the
actual x0 that we have observed.

• The function L(θ; x0) is the likelihood function. It measures
how well each possible value of θ is supported by the actual
data x0 we have observed.! 

p(x0 |") = L("; x0 )
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Likelihood Principle

• The Likelihood Principle says that the likelihood function
contains all of the information about θ that is contained in the
data x0.

• This means that inference should be based on p(x0|θ),
considered as a function of θ.
• Values of θ that make the likelihood big are better

supported by the data than values of θ that make it small
• Therefore, to first order we would like to concentrate on

values of θ that make p(x0|θ) big.
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Maximum Likelihood

• This leads to the first method of inference: Maximum
Likelihood
• Simply choose the value     of θ that maximizes p(x0|θ)
•     might not be unique
• (In normal case, justifies minimizing chi-square)

• Note that considered as a function of θ, p(x0|θ) is not a
probability density.
• It is not normalized
• It cannot be used as if it were a probability in order to

estimate the errors in θ
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Maximum Likelihood

• The method of maximum likelihood has many satisfying
features:
• It is easy to apply (you just need a program to maximize

some arbitrary multivariate function, and these are readily
available)

• In many, even most situations involving parameter
estimation, it gives satisfactory values of

• However
• In some circumstances it gives bad answers
• It does not estimate the error in
• There are both logical and practical objections to

estimating the error by standard methods
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Estimating the Error

• A practical method of estimating the error is to note that the
procedure that takes us from x0 to     generally displays     as a
function of x0:

• But then we can consider generating a large bootstrap sample
of x from the sampling distribution, assuming that     is the
true value of θ:

• To each xi there corresponds a θi:

• It is plausible that the distribution of these θi displays the
uncertainty in our estimated
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Estimating the Error

• This rather roundabout method of looking at the error in    has
a drawback: It violates the Likelihood Principle!
• It is computed using data that were not observed, but

might have been observed, instead of considering only the
data that were actually observed

• Nonetheless, the idea is commonly used and (usually) gives
reasonable answers.

• In special cases (e.g., linear models with normally distributed
errors) this error analysis can be done exactly, rather than by
bootstrap simulation as outlined. But simulation can always
be used.
• Exact or simulated, it still violates the Likelihood Principle

! 

ˆ " 
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Direct Use of Probability Theory

• My choice: Use probability theory directly.
• This goes by the name Bayesian inference
• Requires additional input (background information)
• If we have a prior probability density π(θ) on θ, indicating

what we know about θ before looking at the data, we can turn
p(x0|θ) into a probability density on θ:

• This is Bayes’ Theorem. π(θ) is the prior distribution of θ, or
prior.  p(θ |x0) is the posterior distribution of θ, or posterior.
The denominator is just a normalizing constant.

• θ is regarded as a random variable; x0 is not! 

p(" | x0 ) =
p(x0 |")#(")

p(x0 |")#(")d"$
=
p(x0 |" )#(" )

p(x0 )
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what we know about θ before looking at the data, we can turn
p(x0|θ) into a probability density on θ:

• This is Bayes’ Theorem. π(θ) is the prior distribution of θ, or
prior.  p(θ |x0) is the posterior distribution of θ, or posterior.
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p(" | x0 ) =
p(x0 |")#(")

p(x0 |")#(")d"$
=
p(x0 |" )#(" )

p(x0 )

Conceptually simple
Logically consistent

Powerful
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Maximum a Posteriori Inference

• Suppose we choose a prior, for example, π(θ)∝constant.
• This particular prior cannot be normalized; but as long as

the posterior is normalized, this is not a problem
• Then the posterior distribution will be proportional to the

likelihood (considered as a function of θ):

• By maximizing this posterior distribution we obtain the
Maximum a Posteriori Estimate of θ, also known as MAP

• Since the posterior density is a genuine probability density, it
can be used directly to analyze the error distribution of θ

• Would be like using the likelihood to get the error
distribution. It legitimizes this notion.

! 

p(" | x0 )# p(x0 |")$(")# p(x0 |")
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Using the Posterior Distribution

• 95% Credible Interval: 95% of the total probability lies
between the two red lines

! 

p("i | x0 ) = p(" | x0 )d"#i
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The Importance of Priors

• However, π(θ)∝constant is not reasonable under most
circumstances
• You may have significant prior information about θ. If so,

it would be foolish not to use it. For example, you may
already have a good idea where θ lies. You can put a prior
distribution π(θ) on θ that reflects that information

– For example, we already have a good idea of the value
of the Hubble constant, so to ignore this information
might be problematic

• There may be other constraints that provide important
prior information, e.g.,

– Fluxes are non-negative
• Without prior information, use objective priors
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The Importance of Priors

• An example is when measuring the distance to an object. If
we believe that the particular kind of object is distributed
uniformly in space (out to some limit, say), then before you
even look at the data, you ought to regard the distribution in
the distance s to be distributed proportionally to

• Failure to recognize this leads to the so-called Lutz-Kelker
bias, which was recognized by Trumpler and Weaver in the
1950s but only became widely understood when Lutz and
Kelker rediscussed it in the 1970s
• Lutz and Kelker’s discussion was not based on Bayesian

priors; but the Bayesian method forces one to consider this
when setting up the problem

• The Lutz-Kelker prior is an objective prior

! 
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Hierarchical Bayes Models

• A prior distribution may depend on other unknown
parameters not mentioned in the likelihood. If so, these new
unknown parameters will themselves need priors
• In general any unknown parameter needs a prior

• Thus for example with the likelihood p(x0|θ), the prior may be
π(θ|σ) so that we also need a prior π(σ), obtaining a posterior
distribution (excluding the normalizing factor)

• The hierarchical Bayes idea provides a very rich class of
statistical models that enables the investigator to model the
problem of interest more closely! 

p(",# | x0 )$ p(x0 |")%(" |# )%(# )
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Model Selection

• One may be interested in a class of models with differing
numbers of parameters
• For examples, polynomials of unknown rank, e.g.,

• Maximum likelihood has difficulty with this
•  Methods are basically ad hoc

• The Bayesian approach is straightforward. If m denotes the
model, then the posterior probability of θ and m is given by

• The posterior probability of a model m is given by integrating
out θ:
! 

p(",m | x0 )# p(x0 |")$(" |m)$(m)

! 

p(m | x0 ) = p(",m | x0 )# d"

! 

x = at +b+"t 2
:   Do we need the term in " ?
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Model Selection

• One may be interested in a class of models with differing
numbers of parameters
• For examples, polynomials of unknown rank, e.g.,

• Maximum likelihood has difficulty with this
•  Methods are basically ad hoc

• The Bayesian approach is straightforward. If m denotes the
model, then the posterior probability of θ and m is given by

• The posterior probability of a model m is given by integrating
out θ:
! 

p(",m | x0 )# p(x0 |")$(" |m)$(m)

! 

p(m | x0 ) = p(",m | x0 )# d"

! 

x = at +b+"t 2
:   Do we need the term in " ?

Cluster membership! For each star
    -member, not member (model)
    -probability it is a member
    -decision rule for membership
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Model Averaging

• Conversely, none of the models being compared may be
believable, as for example when polynomials are being used
to approximate some unknown function. In this case one can
make estimates of the unknown parameter θ by model
averaging:

• This allows us to avoid committing to a particular m, but
instead to allow the analysis to weight the contributions of
each individual model by the posterior probability of the
model ! 

p(" | x0 ) = p(",m | x0 )
m

#
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Simulation

• In practice, it has been very difficult to evaluate the
normalizing constant required to produce a normalized
posterior distribution

• In the past 15 years, it has become possible to avoid this
problem by using computationally intensive simulation to
draw a sample from the posterior distribution

• Thus we replace the posterior distribution p(θ |x0) by a sample

• Once we have the sample we can compute the inferences
directly from the sample, e.g.,
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Simulation

• The methods for simulation are beyond the scope of this talk;
The simplest are
• Importance sampling
• Acceptance-rejection sampling

• More generally we have Markov chain Monte Carlo (MCMC)
• Gibbs Sampling
• Metropolis-Hastings sampling

• Other important methods are
• Reversible-jump MCMC
• Metropolis-coupled MCMC (MCMCMC=[MC]3)

• The key idea is that one does not need to know the
normalizing constant in order to draw the sample
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