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"Stars are massive and they have no walls."

"...the transition from confinement in the
stellar interior to open-ended interstellar
emptiness...

Steve Shore: The Tapestry of Modern Astrophysics (2002)

Rob Rutten: Radiative Transfer and Stellar Atmospheres (2000)

On Stellar Atmospheres

...will keep you and me busy
for years to come."

Jason P.  Aufdenberg, 10 July 2003, Michelson Interferometry Summer School Stellar Atmospheric StructureStellar Atmospheric StructureStellar Atmospheric StructureStellar Atmospheric Structure2
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Whatʼs to Come...

* Stellar Interiors vs. Stellar Atmospheres

* Parameters and Equations from a Stellar Atmosphere Model

* Spectroscopic Information on Stellar Atmospheric Structure

* From Basic Radiative Transport to Limb-Darkening

     * with diversions for spherical atmospheres and the Sunʼs temperature structure

* Concept of Radiative Equilibrium

*  Real Stars

    * Altair: rapid rotation
    * Deneb: Stellar Winds
    * β Peg: Extended M-giant atmospheres 

* Summary & References
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Stellar Interiors versus Stellar Atmospheres
Stellar Atmospheres in Contrast

Interiors Atmospheres

Diffusion Equation Radiative Transfer
Equation

Thermodynamic State: Radiation Field

* Thermodynamic Equilibrium (TE)

*Radiation enclosed by matter
at approx. the same temperature

*Radiation field is Planckian

*Radiation field is isotropic

*Non-Local TE

*Matter "sees" radiation of
different temperatures

*Radiation field is non-local

*Radiation field is anisotropic

Radiative flow of energy

Thermodynamic State: Collisional Processes
*Saha & Boltzmann Eqns.
describe ionization and
and excitation

* Maxwellian velocity
distribution of ions and
electrons

*Radiative processes dominate
--> detailed balance

*Saha & Boltzmann don't
describe ionization and
excitation

*Maxwellian velocities
(except chromospheres)
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Figure 4.1: Flow chart showing the most important equations (and their inter-
relationships) which characterize our model for the expanding stellar atmosphere
problem in the STANDARD-WIND case. In the REAL-WIND case the velocity field is
calculated from a solution to the hydrodynamical momentum equation (see Eq.
4.2).
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In equation (4.19), µ is the direction-cosine, I is the specific intensity, the veloc-

ity is measured in units of the speed of light c, β(r) = v(r)/c, and γ = 1/(1−β2)1/2.

The principal reason for choosing to solve the radiative transfer problem in the co-

moving, fluid rest frame is that although the frequency spectrum may be complex,

with many overlapping lines, the opacity is isotropic. This leads to great simpli-

fication in the radiation-matter interaction terms relative to the observer’s frame

equation. For example, the flow velocity is not an argument of the line profile

function in the comoving frame. Frequencies are measured in the frame of the

moving fluid, therefore we can use a static line profile. In this frame one can di-

rectly integrate over angle and use comoving-frame moments of the radiation field

in the computation of the radiation pressure and radiative equilibrium equations.

The angular dependence of the opacity in the observer’s frame leads to computa-

tional difficulties, and in flows with small velocity gradients with many overlapping

spectral lines, escape probability methods, like the Sobolev approximation, are not

valid.

The conservation of energy, assuming radiative equilibrium, can be specified in

the Lagrangian frame (Hauschildt, 1992b) by

 ∞

0

(ηλ − χλJλ) dλ = 0 (4.20)

where ηλ and Jλ describe the emissivity and mean intensity respectively. This

assumes that each element of material absorbs the same amount of energy that it

emits.
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Example Parameters and Equations for Stellar Atmosphere Models*
* In this case, hot stars with winds

lEffective Temperature
lReference Radius
lGravity @ Reference Radius
lChemical Composition

lOuter Radius
lMass-Loss Rate
lMax. Stellar Wind Velocity
lVelocity fi eld of the Wind

Inner Structure
lPressure gradient goes as gravity/opacity

Outer Structure
lVelocity Field
lDensity structure via continuity equation

l LTE ionization and level
populations, chemistry

lSpherical geometry

l

l
lµ is direction-cosine
lr is the radius
lI  is the intensity
lη is the emissivity
lχ is the opacity

lNon-LTE level populations; 
radiative and collisional rates

l Temperature structure adjusted
to  conserve energy; in cool
stars convective equilibrium can be
established in the inner structure

For Interferometry
Full radiation fi eld: intensities @ every angle
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path length, compared with the physical depth seen at the center of the solar disk. Thus,

the limb of the sun appears less bright than the center.

The shape of the overall stellar spectrum and the character and strength of its spectral

lines are most sensitive to the temperature and pressure structure of atmosphere. How and

what we know about stellar temperatures and pressures are the subjects of the next two

sections.

2.1. Stellar Temperatures

To first order, in between the spectral lines, the radiative energy distribution from a

stellar atmosphere follows the Planck function (3) of a characteristic temperature known as

the effective temperature, Teff . Formally, the effective temperature does not correspond to

a particular temperature in the stellar atmosphere, but to the total radiative energy or the

bolometric flux, F ,
F =

 ∞

0

Fλ dλ =

 ∞

0

B(Teff)λ dλ = σT 4
eff (14)

where Fλ is monochromatic flux at each wavelength λ and σ is the Stefan-Boltzmann con-

stant. The stellar continuum from a geometrically thin photosphere emanates from layers

near where τ = 1 in the continuum, consequently these layers have temperatures very near

Teff .

A qualitative estimate of Teff can be made by observing the color of a star. The mea-

surement of the ratio of blue to red light will capture this brightness distribution, the mea-

surement being made either through filters transmitting broad bands of the blue and red

spectral regions or with instruments designed to sample the light monochromatically from

widely separated wavelengths. As observed in the laboratory and described by the Planck

function, incandescent objects radiate most brightly at the short wavelengths, blue or vio-

let colors, whereas cool stars radiate most strongly at longer wavelengths, red colors. The

wavelength at the peak intensity of a black body spectrum must satisfy

dBλ(T )

dλ


λmax

= 0 (15)

which yields the relation

λmaxT = 0.294 cm K (16)

known as Wien’s displacement law. Low temperatures yield large values for λmax and visa-

versa, consistent with observations.

– 8 –

To determine Teff quantitatively the spectral energy distribution of the star must be

known relative to some reference standard such as a calibrated oven. Near the end of the

19th century ultra-sensitive alcohol thermometers were being employed to study the sun’s

heat distribution between 3000 Å and 3 µm. For other stars visual comparisons were made

between starlight and a lamp calibrated on an oven. Assuming the shape the spectrum ob-

tained in this way was a black body, a value of Teff could be determined. Stellar continua are

black bodies only to first order and so these first measurements were subject to considerable

systematic error. Modern spectrophotometric observations of stars are calibrated relative to

the bright star Vega, whose spectral energy distribution has been derived relative to pre-

cisely calibrated freezing-point copper black bodies. If both the absolute flux distribution,

corrected for extinction by the interstellar medium and the earth’s atmosphere, and the an-

gular diameter of a star can be measured precisely, a fundamental effective temperature can

computed from

Teff =


4F
σθ2

 1
4

(17)

where θ is the angular diameter. Currently it is possible to measure θ accurately for only

bright stars, but the situation will improve soon with optical interferometers and space-based

astrometric missions set to make precise measurements of fainter stars. In the absence of

accurate angular diameter measurements, synthetic stellar continua from model atmospheres

are employed to estimate Teff .

The line spectrum is also used to estimate Teff . This is possible because the state of

a gas, the excitation and ionization of the constituent atoms and molecules, is governed

by radiation, collisions, and the principle of detailed balance. Detailed balance in a thermal

plasma occurs when any reaction is balanced by an inverse reaction. For example, the balance

between ionization (by radiation and collisions) and recombination of an ion and electron.

When collisions dominate, this principle can be used to derive the Boltzmann distribution,

n2

n1


=

g2

g1

e−E21/kT (18)

for the relative population, n2/n1, of two energy levels in a atom separated by an energy

E21. The ratio statistical weights, g2/g1, depends on the quantum mechanical properties of

the two levels. In a similar way, the Saha equation,

log
N+

N0
ne =

2u+

u
λ−3
e e−χion/kT (19)

where,

λe =
h

(2πmekT )1/2
(20)

F


FFFFFF
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Spectroscopic Information
Energy Distribution; Color Temperature

surface fl ux; fl ux per unit area at the photosphere

connected to the fl ux at
earth via the angular diameter
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but the line profiles also have extensive wings due to pressure broadening and as such a

good estimate of the surface gravity is needed to correctly interpret these lines. Figure 12

shows both a typical curve of growth and the kinds of lines that are found on its three main

segments.

In the simple case of a homogeneous slab of uniform temperature the equivalent width

of a weak line transition from level i to j is given by

Wλ =
πe2

mc2
λ2Nifij (35)

where Ni is the number of ions in level i of element Z and fij is the atomic oscillator

strength of the transition. The Boltzmann (18) and Saha (19) equations relate Ni to the

total abundance of the element Z at a given temperature and pressure. The first segment of

the curve of growth is established by the linear relationship between Wλ and Ni.

The equivalent width of a given line therefore is dependent on the abundance, the

oscillator strength, and the thermal excitation. For a given line the f value and excitation

potential are fixed and our model temperature and pressure structure (constant for the

homogeneous slab) sets the ionization and excitation state of the gas. From here the value

for the abundance is adjusted until the observed equivalent width is reproduced. Abundances

derived from lines with (1) different excitation potentials, (2) different strengths, and from of

(3) several different ionization stages of the same element, should yield the same abundance

in a chemically homogeneous atmosphere. If they do not, the model parameters (Teff , log g,

abundance, turbulent line width) are adjusted and the analysis proceeds in an iterative

fashion until the abundances derived from different lines produce consistent results.

The use of equivalent widths discards all the shape information present in the line

profile: only the integrated strength is used. This is appropriate for observations made with

moderate wavelength resolution because the equivalent width is not altered by the resolution,

expect for possible systematic effects related to the estimation of the continuum reference

level, whereas the line shape is dominated by instrumental effects. Measurements made

with high-resolution, however, minimize the instrumental contamination, permitting a direct

comparison of the computed and observed line shapes. Both the equivalent width and the line

profile approaches assume that the absorption line is isolated in the stellar spectrum. This

is generally not true, especially for cool stars and at blue and ultraviolet wavelengths where

severe crowding and overlapping of lines occurs. Important absorption lines are frequently

badly blended together, and there is no clean spectrum of the measurement of an equivalent

width or a line profile. In such cases it is necessary to compute the predicted spectrum

including all the overlapping and blended absorption lines, though this pushes our knowledge

of atomic physics to the limit. If the synthetic spectrum does not match the observed

Linear Curve-of-Growth



double line
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Spectroscopic Information Continued...

β Canis Majoris
B2 III

Surface Gravity, Pressure Structure Rotational Velocity

α Cygni
A2 Ia

ζ1 Ursa Majoris aka Mizar A
A2 V + A2 V

Space, Orbital Motion
Outfl ow Velocities

H�

C II

β Orionis
B8 Ia
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Spectroscopic Information Continued...
Surface Structure via Doppler Tomography

Donati et al.  (1999) MNRAS 302, 437

Radial and non-Radial Pulsation; Convection

Solar Spectrum

“wiggles”

“no wiggles”

Vogt & Penrod  (1983)  ApJ 275, 661

Gray: OASP



3 Intensity: The basic macroscopic quantity of RT

Start with...

dEλ = Iλ dω dσ dλ dt (1)

dEλ/dt: Energy per sec though area dσ through an opening angle dω at a
wavelength λ.

Intensity (strictly the “specific intensity”):

Iλ =
dEλ

dω dσ dλ dt
(2)

and depends on:

1. location in space

2. direction

3. wavelength

Note: Intensity is independent of the distance from the source. For ex-
ample, the solar disk’s intensity is as bright from Saturn as from the
Earth. The flux however is not independent of distance.
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9 The Flux and the Effective Temperature

9.1 Flux: A Definition

• The flux, the net energy flow rate normal to a surface, is a moment
of the radiation field. This means:

π · Fλ =

Iλ cos θ dω (37)

where the solid angle dω is:

dω = sin θ dθ dφ

For azimuthal symmetry:

π · Fλ = 2π

 +1

−1
Iλ cos θ d cos θ (38)

9.2 Isotropic Radiation Field

• In this case the intensity is independent of direction (angle) so:

π · Fλ = 2πIλ

 +1

−1
cos θ d cos θ = 0 (39)

The flux is zero within an isotropic source
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s s + ds

I� I� + dI�

4 Radiative Energy Transport

absorption coefficient: κλ

emission coefficient: λ

optical depth, τλ: dτλ = κλ ds

Along a ray:
dIλ
ds

= −κλ Iλ + λ (4)

so,

dIλ
ds
> 0 λ > κλ Iλ (5)

dIλ
ds
< 0 λ < κλ Iλ (6)

Divide by κλ,

dIλ
κ ds

= −Iλ +
λ
κλ

= −Iλ + Sλ (7)

Source Function: Sλ = λ/κλ

We now have the basic radiative transfer equation (RTE):

dIλ
dτ

= −Iλ + Sλ (8)

Note: When solving complicated problems even for complex geometries
the RTE boils down to this simple one dimensional equation.
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Intensity and the Radiative Transport

Intensity: The basic macroscopic quantity of 
Radiative Transfer.

Energy per time per wavelength per area
per solid angle.

Intensity depends on:

1. location in space
2. direction
3. wavelength

Note: intensity is independent of the distance
from the source.   The fl ux is not independent
of distance.

Transport of intensity along a ray:

path length

absorption coeffi cient emission coeffi cient
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Source Function

Optical Depth
Radiative
Transfer
Equation

beam enhanced

beam extinguished
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Perfect Black Bodies; Kirchoffʼs (Radiation) Law

This must be 
true in general 
not to violate 
energy 
conservation. 

From detailed 
balance, this 
must be true 
at each wave-
length λ in 
order that the 
2nd law of ther-
modynamics is 
violated! 

 “A good emitter is a 
good absorber”
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thermodynamic equilibrium (LTE) and just like the isothermal cavity, the source function

equals the Planck function, I(τ) = S(τ) = B(τ). Equation (9) can be written, dropping the

λ subscripts for the moment,

I(τ) = I(0) + τ(S(τ)− I(0)) (10)

which in LTE can be written

I(τ) = Bdeep layer + τ(Bouter layer −Bdeep layer) (11)

In contrast to the continuous spectrum, which in the earliest treatments of sunlight was

assumed to come from a hot, dense interior, the absorption spectrum was treated as a

cool, thin, isothermal gaseous atmosphere called a “reversing layer” with the same chemical

composition as the rest of the star. In detail, however, the temperature of the solar atmo-

sphere increases with depth below the visual surface, the photosphere, and also increases with

height into the chromosphere and corona. This temperature rise is likely due to non-thermal

processes connected with magnetic fields that structure the tenuous outer atmosphere (see

SOLAR PHYSICS). Consider the visible photosphere. At optical wavelengths, deeper layers

are brighter than the outer layers,

Bλ(T )deep layer > Bλ(T )outer layer. (12)

Therefore, according to equation (11) the intensity is reduced at wavelengths of appreciable

optical depth, for example in spectral lines. Thus, the visible solar spectrum is an absorption

spectrum, hence the term “reversing”. In contrast, at ultraviolet wavelengths, the high

temperature of chromosphere and corona satisfy:

Bλ(T )deep layer < Bλ(T )outer layer. (13)

Then equation (11) shows that since the intensity increases with height, an emission spectrum

is produced.

It is important to point out the at any wavelength an observer sees to an optical depth

of about unity, which means the chance is better than even that a photon will be absorbed

or scattered before exiting from that depth. As pointed out above, when the optical depth

becomes large the intensity reduces simply to the source function. The intensity the observer

sees an any wavelength is essentially the source function at an optical depth of unity (see

Figure 1). In the cores of strong photospheric absorption lines, for example, one sees to

shallower physical depths, thus to fainter, cooler layers than one sees outside of the line core.

For this reason the line cores are dark. Similarly, when we observe the sun near the limb, an

optical depth of unity is reached at a shallower physical depth, due to the longer geometric
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Basic Spectral Line Formation: Isothermal Slabs

AbsorptionEmission

a. Source function not a function of optical depth b. Optical depth is much less than one c. LTE (                     )

➪	a ➪ ➪	b ➪
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First, dividing by κλ,
dIλ
κλ ds

= −Iλ +
λ
κλ

(5)

then,
dIλ
dτ

= −Iλ + Sλ. (6)

Here κλ ds is defined as the optical depth, dτλ, which measures the mean free path of a

photon before it interacts with matter. The ratio of the emission and absorption coefficients

is called the source function, Sλ = λ/κλ. So, in the case of a uniform temperature cavity

Iλ = Sλ = Bλ.

The solution of the transfer equation for an isothermal, homogeneous slab of gas is

Iλ(τλ) = Iλ(0) e
−τλ + Sλ(1− e−τλ). (7)

This provides the intensity as a function of depth and is a crude but useful approximation

for light passing into a planetary atmosphere. The term Iλ(0) e
−τλ is the intensity removed

from the beam and Sλ(1 − e−τλ) is the intensity added to the beam. The intensity at zero

optical depth, Iλ(0), specifies the light source entering the slab and Iλ(τλ) is intensity at

some optical depth of interest, for example, on the other side of the slab.

Returning to the first case with no light source, Iλ(0) = 0, and a thin slab, so τλ  1,

the intensity is

Iλ(τλ) = Sλτλ. (8)

since e−τ becomes 1 − τ for very small τ . Since the medium is hot, it emits its own light

that might otherwise be dominated by an external brighter source. This relation shows that

the intensity is greatest at wavelengths where the optical depth is highest, in other words

where κλ is large. This is just Kirchoff’s law from equation (4). If the optical depth is not

small then e−τ goes to zero and the intensity is simply the source function.

In the second case a light source is required, so Iλ(0) > 0, along with a thin slab, again

τλ  1. The solution of the transfer equation now becomes

Iλ(τ) = Iλ(0)(1− τλ) + Sλ(τλ). (9)

At wavelengths where the Sλ is small compared with the light source the intensity is reduced

after passing through the slab, Iλ(τλ) < Iλ(0), and an absorption spectrum is produced.

Alternatively, at wavelengths where Sλ > Iλ(0) then Iλ(τλ) > Iλ(0) and an emission spectrum

results. These basic results can be used to understand the formation of the solar spectrum.

As a first approximation, it is not bad to assume that at a particular depth τ the solar

atmosphere can be characterized by a single temperature. This assumption is known as local
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thermodynamic equilibrium (LTE) and just like the isothermal cavity, the source function

equals the Planck function, I(τ) = S(τ) = B(τ). Equation (9) can be written, dropping the
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8 More Radiative Transfer: Now with angles!

8.1 Plane Parallel Approximation

• Valid for the solar photosphere. Not valid for the extended atmo-
spheres of giants, supergiants, stellar winds, novae or supernovae.

• Write down the RTE along an arbitrary path s along an angle θ
measured from the z axis. (We dispense with the λ subscripts here):

dI(θ)

ds
= −κI(θ) +  = −κI(θ) + κS (18)

• That optical depth along the path s is defined:

dτs = κds (19)

• We make a sign change here. Path s and optical depth τ convention-
ally increase in opposite directions, so:

dτs = −κds (20)

The optical depth along the z axis is then:

dτ = dτz = dτs sec θ (21)

• The term dI(θ)
ds can be written in terms of τelmz:

dI(θ)

ds
=
dI(θ)

−dτs/κ
= −κ dI(θ)

sec θdτ
(22)

• Now the RTE is:

dI(θ)

sec θdτ
= I(θ)− S (23)
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8 More Radiative Transfer: Now with angles!

8.1 Plane Parallel Approximation

• Valid for the solar photosphere. Not valid for the extended atmo-
spheres of giants, supergiants, stellar winds, novae or supernovae.

• Write down the RTE along an arbitrary path s along an angle θ
measured from the z axis. (We dispense with the λ subscripts here):

dI(θ)

ds
= −κI(θ) +  = −κI(θ) + κS (18)

• That optical depth along the path s is defined:

dτs = κds (19)

• We make a sign change here. Path s and optical depth τ convention-
ally increase in opposite directions, so:

dτs = −κds (20)

The optical depth along the z axis is then:

dτ = dτz = dτs sec θ (21)

• The term dI(θ)
ds can be written in terms of τelmz:

dI(θ)

ds
=
dI(θ)

−dτs/κ
= −κ dI(θ)

sec θdτ
(22)

• Now the RTE is:

dI(θ)

sec θdτ
= I(θ)− S (23)

8.2 Surface Intensities

• We want to find the intensities that we can actually measure, that is
the intensity emerging at the surface, τ = 0, into all angles between
–π/2 and π/2.

• Solve the RTE with an integrating factor:

dI(θ)

sec θdτ
= I(θ)− S (24)

factor = e−τ sec θ

dI(θ)

sec θdτ
· e−τ sec θ = I(θ) · e−τ sec θ − S · e−τ sec θ (25)

• Let x = τ sec θ:

d

dx


Ie−x


= −Se−x (26)

• Now we integrate from τ = 0 −→∞ which is x = 0 −→∞:

 ∞

0

d

dx


Ie−x


dx =

 ∞

0
−Se−x dx (27)


Ie−x

∞

0
= Ie−∞ − I(0)e0 =

 ∞

0
−Se−x dx (28)

I(0, θ) =

 ∞

0
Se−τ sec θ d(τ sec θ) (29)

This in known as the formal solution to the equation of transfer

Where I(0, θ) is the surface intensity (τ = 0) leaving the atmosphere
at angle θ.
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8.3 Linear Source Function and Limb Darkening

• Let’s let the source function be a linear function of the optical depth:

S = a+ bτ really Sλ = aλ + bλτλ (30)

• Let’s stick this form of S into the formal solution:

I(0, θ) =

 ∞

0
a e−τ sec θ d(τ sec θ) +

 ∞

0
b τe−τ sec θ d(τ sec θ) (31)

This reduces to...

I(0, θ) = −a ·

e−τ sec θ

∞

0
+ b ·


− sec θτ − 1

sec θ
e−τ sec θ

∞

0
(32)

I(0, θ) = a+ b cos θ (33)

• So normal to surface of the atmosphere:

I(0, 0) = a+ b cos(0) = a+ b

• and parallel to surface of the atmosphere:

I(0, π/2) = a+ b cos(π/2) = a

• This means for positive values of a and b the intensity is a maximum
for cos θ = 1, normal to the atmosphere. That’s a good thing because
it means the intensity is greatest from the center of the solar disk and
smallest when observed at angles near cos θ = 0, near the limb.

• The Sun and a few other stars show limb darkening. HST and ground
based interferometric observations have resolved a hand full of bright
giants and supergiants.

The intensity varies with angle because the source function changes with depth
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8.4 The Source Function as a Power Series

• In general S can be written as a power series in τ .

Sλ(τλ) =


i

aλ iτ
i
λ (34)

• The formal solution is then evaluated to be

Iλ(0, θ) =


i

Aλ i cos
i θ (35)

A power series in cos θ, where the coefficients Ai are given by:

Aλ i = aλ i · i! (36)

Typo in BV Page 233: Aλ i = aλ i!
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More Radiative Transfer:  Now with Angles!

Radiative Transfer Equation

Plane Parallel
Geometry

θθ

θθ

1. Setup Equation 2. Solve for the Intensity at the Surface! 

8.2 Surface Intensities

• We want to find the intensities that we can actually measure, that is
the intensity emerging at the surface, τ = 0, into all angles between
–π/2 and π/2.

• Solve the RTE with an integrating factor:

dI(θ)

sec θdτ
= I(θ)− S (24)

factor = τ sec θ

dI(θ)

sec θdτ
· e−τ sec θ = I(θ) · e−τ sec θ − S · e−τ sec θ (25)

• Let x = τ sec θ:

d

dx


Ie−x


= −Se−x (26)

• Now we integrate from τ = 0 −→∞ which is x = 0 −→∞:

 ∞

0

d

dx


Ie−x


dx =

 ∞

0
−Se−x dx (27)


Ie−x

∞

0
= Ie−∞ − I(0)e0 =

 ∞

0
−Se−x dx (28)

I(0, θ) =

 ∞

0
Se−τ sec θ d(τ sec θ) (29)

This in known as the formal solution to the equation of transfer

Where I(0, θ) is the surface intensity (τ = 0) leaving the atmosphere
at angle θ.

(use integrating factor              )factor =(use integrating factor              )factor = e(use integrating factor              )e−(use integrating factor              )−τ(use integrating factor              )τ sec(use integrating factor              )sec θ(use integrating factor              )θ

This is the formal solution to the equation of transfer.
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Where I(0, θ) is the surface intensity (τ = 0) leaving the atmosphere
at angle θ.

 is the surface (τ=0) viewed from angle θ.

Intensity varies with angle because 
the source function varies with depth.

I, S and τ are 
all functions of 
wavelength

3. Trial Source Function 
plug in:
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AST 598: Atmospheres – Session #3
Grey Temperature Distribution under Radiative

Equilibrium

10 Empirical Depth Dependence of the Source Func-

tion

• Recall for an observed intensity distribution with angle (limb dark-
ening) expressed as a power series in cos θ:

Iλ(0, θ) =


i

Aλ i cos
i θ Aλ i = aλ i · i! (47)

We can solve the inverse problem and find the source function Sλ(τλ):

Sλ(τλ) =


i

aλ iτ
i
λ (48)

• So an intensity distribution such as

Iλ(0, θ) =


Ao(λ) + A1(λ) cos θ + A2(λ) cos

2 θ


Iλ(0, 0) (49)

implies a source function like:

Sλ(τλ) =


Ao
0!

(λ) +
A1

1!
(λ)τλ +

A2

2!
(λ)τ 2λ


Iλ(0, 0) (50)

• In the non-grey case we’ll have a different run of Iλ(0, θ) for each
wavelength and therefore a different run of Sλ(τλ) at each wavelength.
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dBλ
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kλ−4

1
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Determining the Temperature Structure of the Sun:  Limb-Darkening
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Now,

dIλ
dτ
> 0 Sλ > Iλ (9)

dIλ
dτ
< 0 Sλ < Iλ (10)

4.1 The Source Function and a Perfect Blackbody

Transfer in a perfect blackbody:

dIλ
ds

= −κλ Iλ + κλ Sλ (11)

with a perfect BB, Iλ is isotropic and homogeneous

dIλ
ds
−→ 0

therefore,

Sλ ≡ Iλ ≡ Bλ

Planck function:

Bλ =
2hc2

λ5
1

ehc/λkT − 1
(12)

Numerically,

π ·Bλ =
c1λ

−5

ec2/λT − 1
(13)

c1 = 3.741× 10−5 [erg cm2 s−1]
c2 = 1.438 [cm·K]
with λ in [cm] & T in [K].

Note: Sλ = Bλ = λ/κλ which leads to Kirchoff’s Law

λ = κλ ·Bλ (14)

9.4 Effective Temperature for a Grey Atmosphere

• If we assume LTE and take Sλ ≡ Bλ, the surface flux at a given
wavelength will depend only on the temperature at an optical depth
τλ = 2/3. Further more we must have a grey opacity such that τλ is
independent of wavelength. This way we see to the same depth at all
frequencies and this depth has a single temperature. So the radiation
field is completely discribed by the temperature.

κλ −→ κ and τλ −→ τ for grey atmosphere

π · Fλ(0) = π ·Bλ(τλ = 2/3) (43)

The bolometric flux is,

π

 ∞

0
Fλ(0) = π

 ∞

0
Bλ(τλ = 2/3) = σT 4(τ = 2/3) (44)

where σ is the Stefan-Boltzman constant.

• The effective temperature Teff of a star is defined as

πF (0) = σT 4
eff (45)

Equating these last two equations gives

σT 4(τ = 2/3) = σT 4
eff −→ Teff = T (τ = 2/3) (46)

• No such thing as an effective temperature in a spherical atmosphere.
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Determining the Temperature Structure of the Sun:  Limb-Darkening
Continued...

Leads to the solar temperature structure assuming:

1. Plane-parallel geometry is valid.  
The sunʼs photosphere is roughly 1000 km thick versus a solar
radius of 7 x 105 km, or an extenstion of 0.1%.

2.  Local thermodynamic equilibrium is a good approximation.

The Planck function connects S(τ) to T(τ), the temperature structure. 
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Models for Limb-Darkening: Plane-Parallel vs. Spherical Geometry

The semi-infi nite nature of 
plane-parallel models means  
that the atmosphere is optically 
thick at all angles.

The rays of a spherical model
impact nested shells, of which 
the outer most are optically 
thin.

Drop off characteristic of spherical models.
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Spherical Models and the 3rd Parameter: Mass (or Radius)
Gravity, Mass, Radius: Choose Two!

The common use of plane-parallel model atmospheres 
(e.g. Kuruczʼs ATLAS programs) gets us accustomed 
to thinking that for a given chemical composition, a 
model hydrostatic atmosphere is primarily
characterized by  1) the effective temperature
and 2) the surface gravity.  Spherical models require a 
3rd parameter, mass or radius, to established the
luminosity of the star (remember, fl ux is
not conserved in the spherical case).

g(r) =
GM

r2

1

In spherical models the gravity is 
a function of depth.  The gravity 
parameter must refer to a reference 
radius consistent with the stellar 
mass.

Atmospheric Extension is a function of Mass The ratios of  angular diameter measurements 
at several wavelengths, some of which  probe 
strong molecular bands, will depend of the
extension of the atmosphere and therefore the 
mass.

Mass is an additional free parameter for
fi tting visibility functions, however for
near by stars the mass may be well
constrained and provide a strong test
for the models.

same Teff
and gravity
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Temperature and Opacity of the Solar Atmosphere:  Limb-Darkening
Continued...
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Determining the Temperature Structure of the Sun:
Disk-Center Absolute Intensities

1. Compute the brightness temperature
from the measured central intensities, I.

Assume I=B and solve for T
at each wavelength:

2. Construct a model atmosphere which
reproduces the brightness temperature as 
a function of wavelength. 

Models are fi ne tuned to match the inten-
sity as a function of wavelength.

The best fi t model yields a
temperature-depth relationship.

1
9
7
6
A
p
J
S
.
.
.
3
0
.
.
.
.
1
V

1
9
7
6
A
p
J
S
.
.
.
3
0
.
.
.
.
1
V

5



Black Body/Planck Function

Model Spectra: 10,000 K

Lyman Balmer Paschen
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Radiative Equilibrium

1

4

dF

dτ
= J − S (68)

in radiative equilibrium the gradient of the flux is zero so,

J = S (69)

• Otherwise the condition of R.E. holds overall wavelengths

 ∞

0

1

4

dFλ
dτλ

dλ =

 ∞

0
(Jλ − Sλ) dλ (70)

can be rewritten as

 ∞

0

1

4

dFλ
dz
dλ = 0 =

 ∞

0
(κλJλ − κλSλ) dλ (71)

or finally,

 ∞

0
κλJλ dλ =

 ∞

0
κλSλ dλ (72)

Absorbed Radiation = Emitted Radiation

We knew this already. It must be true in thermal equilibrium.

• Compare Blackbody vs. Pure Hydrogen vs. ATLAS model. For a
given effective temperature the area under each flux distribution must
be equal. The bolometric flux must be the same, however the Fλ does
vary.

(Fλ)blackbody = (Fλ)pure hydrogen (73)

but,


(Fλ)blackbody dλ =


(Fλ)pure hydrogen dλ =

σ

π
T 4eff (74)

• This is the convergence criterion for iterative model atmospheres.
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be equal. The bolometric flux must be the same, however the Fλ does
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• This is the convergence criterion for iterative model atmospheres.

Radiative Equilibrium applies in the 
tenuous outer layers of stars where radiation 
is the dominant energy transport mechanism.

R.E. is a special case of thermal equilibrium 
which says that the temperature structure is 
not changing with time so the radiative fl ux 
must be constant.

This means the total energy absorption must 
equal the total energy emitted in each layer; 
there are no sources or sinks of radiative 
energy.

Extended Atmospheres
For non-plane parallel atmospheres 
the fl ux is not constant, but falls off 
like  1/r2.  In this case, only the 
luminosity is constant with depth.



Cooler, wider
equator Hotter, narrow

latitude
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Rapid Rotation: Structural Distortion & von Zeipel Gravity Darkening
Stars must satisfy both mechanical and thermal 
requirements for stability.

Mechanical: rotation distorts a starʼs fi gure 
as it adjusts its structure to maintain hydrostatic 
equilibrium.

Interferometric measurement of Altair (A7 V)!

Thermal:  At the equator, lower gravity reduces
both the pressure and temperature gradients.
Local fl ux ~ local gravity
Local effective temperature ~ (local gravity)1/4

Effective Temperature varies with stellar latitude: 
cooler equator, hotter pole.

Effect: Limb-darkening varies as a function of 
stellar latitude

van Belle et al  2001
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APPENDIX

A. spatial frequencies and position angles

The spatial frequency and position angle coverage for each star is derived from the array’s sampling of the u, v-plane.
The spatial frequency, x, is defined as

x =

u2 + v2 (A1)

and the position angle, β, is defined as
β = tan−1(u/v) (A2)

which is the angle measured from the north through east. In this regard we follow Quirrenbach et al. (1997) who state:
“...the baseline position angle β, i.e., the angle of the corresponding point in the (u, v)-plane, measured clockwise from the
v-axis. For a north-south baseline, β=0 at meridian transit.” In Quirrenbach et al. (1997) position angles derived from
interferometric data and polarimetric data are compared and thus the standard convention for position angle is adopted.
The spatial frequencies are computed for the baselines, B, and bearings, ψ, listed in Table A4. The east and north

components of the baseline vector are
Beast = B sin(ψ) (A3)
Bnorth = B cos(ψ) (A4)

and the u, v values are
u = (Beast cos(h)−Bnorth sin(φ) sin(h))/(206265λ0) (A5)
v = (Beast sin(δ) sin(h) +Bnorth(sin(φ) sin(δ) cos(h) + cos(φ) cos(δ)))/(206265λ0) (A6)

where h is the hour angle, δ is the declination, φ is the latitude, and λ0 is the central wavelength of the observation, for
the K-band λ0  2.2µm.

A.1. Position Angles and the Rapid Rotators

It must be noted that the position angle convention adopted above differs from that used by (van Belle et al. 2001,
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to the Quirrenbach et al. convention:
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to β = 25◦. The locations of the stellar poles are therefore at angles −65◦ and 115◦. The ellipsoid fit from vB01 gives an
equatorial diameter of a = 3.46 mas and a polar diameter of b = 3.04 mas. The diameter as a function of position angle
is given by:

θ(β) =

(x2 + y2) (A7)

x = a cos(β − 25◦) (A8)
y = b sin(β − 25◦) (A9)

We are able to predict the ratio of a/b for the other rapid rotators (ζ Oph, α Leo, α Oph) however we have no constraints
on the orientation of their rotation axes. This will be determined from the observations. For the purposes of the computing
the spatial frequency sampling only, we have assumed that the stars have the same orientation on the sky as α Aql with
the predicted axial ratios appropriate for each star.
The axial ratios are calculated employing an IDL program written by Steve Cranmer based Cranmer & Owocki (1995).

The critical angular rotation velocity, ωcrit (the angular velocity below which the star is mechanically stable) is given by

ωcrit =


8
27

GM

R3p(ω)
(A10)
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where G is the universal gravitational constant, M is the stellar mass, and Rp is the polar radius. The ratio of the
equatorial radius to the polar radius as a function of the dimensionless rotational speed u, ω = uωcrit, is

Re(u)/Rp =
3
u
cos


π + arccos(u)

3


(A11)

The equatorial rotation speed is
Veq = uωcritRe(u) (A12)

Taking the observed v sin i value for each star as a lower limit on the equatorial rotation speed, Veq we obtain a lower limit
on u which yields the equatorial-to-polar radius via equation A11. The value for ωcrit is constrained using the published
angular diameter, parallax, and mass from comparison with evolutionary tracks. The expected equator-to-polar radius
ratios are listed in Table A5.

B. synthetic visibilities

We compute the monochromatic synthetic visibilities with a Hankel transform using the model specific intensities and
corresponding angles:

V (λ) =

 ∞

0

J0

xρ(λ/λ0)


Iλ(ρ)ρ dρ

 ∞

0

Iλ(ρ)ρ dρ
(B1)

where V is the visibility, J0 is the zeroth order Bessel function, x is the spatial frequency, ρ is the angular radius, and λ
is the wavelength. The model intensities as a function of wavelength and angular position are Iλ(ρ).
The mean wavelength λ0 for a passband with a sensitivity function, Sλ is

λ0 =

 ∞

0

SλFλλ dλ
 ∞

0

SλFλ dλ

(B2)

The broad-band average visibility is computed from

|V 2| =

 ∞

0


V (λ)SλFλ

2
dλ

 ∞

0


SλFλ

2
dλ

(B3)

Table A4

CHARA Baselines

Name Baseline Bearing
(meters) (degrees)

S1-S2 34.09 350.1
E1-E2 65.88 236.5
W1-W2 110.88 97.5
W2-E2 152.22 63.3
S2-W2 178.39 340.2
S1-W2 212.04 341.8
E1-W2 217.76 241.2
S2-E2 248.11 17.7
S2-W1 249.38 317.0
W1-E2 251.31 77.6
S1-W1 278.50 320.9
S1-E2 278.76 14.5
S2-E1 302.30 25.5
E1-W1 313.50 253.2
S1-E1 330.65 22.1

aFrom Table 4 of CHARA
Technical Report No. 48.
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Stellar Winds, An Example
Limb-darkening Effects & Mass Loss Rates for Deneb (A2 Ia)

CHAPTER 4. UNIFIED STELLAR WIND MODELS 129
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Figure 4.1: Flow chart showing the most important equations (and their inter-
relationships) which characterize our model for the expanding stellar atmosphere
problem in the STANDARD-WIND case. In the REAL-WIND case the velocity field is
calculated from a solution to the hydrodynamical momentum equation (see Eq.
4.2).

Limb Profile Models
Comparison with Observed
Visibilities

Mass Loss and Limb Profiles

NPOI Configuration

Baselines:
23.3 m
94.9 m
104.2 m

Predicted NPOI Visibilities
for Alpha Cygni

No Limb
Darkening

High Mass-Loss

The limb brightness is sensitive 
to the density structure, which is 
a function of the mass-loss rate.

Data in the 1st lobe do not
constrain the mass-loss rate.

High spatial frequency data is needed 
to break the angular diameter/mass-loss 
rate degeneracy.

Simulations indicate that measurements
of the 2nd lobe could provide a mass-
loss diagnostic for hot supergiant, like
Deneb and Rigel (B8 Ia).
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Extended Cool Star Atmospheres, An Example: β Pegasi (M 2.5 II)

Data:
Quirrenbach
et al (1993)

ApJ, 406, 215

Titanium Oxide Band Head; Narrow Band Filters Model Spectra versus Observed Spectra

Spherical wind 
model fi ts
interferometry,
but not spectrum.

Spherical 
hydrostatic
model fi ts
spectrum, but not
interferometry.



Jason P.  Aufdenberg, 10 July 2003, Michelson Interferometry Summer School Stellar Atmospheric StructureStellar Atmospheric StructureStellar Atmospheric StructureStellar Atmospheric Structure23

Closing Thoughts, Summary

Spectroscopy probes stellar fl uxes, however interferometry probes stellar intensities, 
the basic quantity of radiative transfer in stellar atmospheres.  Thatʼs very cool!

Spectroscopy and interferometry are complementary.   How well does that best fi t stellar atmo-
sphere model fi t both the visibility data and the stellar spectrum. 

Stellar atmospheres are not black bodies.  Published spectrophotometry exists for
thousands of bright stars.

Most bright stars are variable.  Contemporaneous spectrophotometry/spectroscopy and
interferometry should be the goal.

You always see to an optical depth of unity.  In spherical atmospheres the limb is
very “fuzzy” and optically thin.  

Spherical models are parameterized by Teff, log(g) and Mass.

Outer boundaries of real stellar atmospheres are complicated by winds,  shells,
chromospheres, convection, magnetic fi elds, pulsation, etc.  Realistic physical models
are beyond challenging.  Interferometry will help to further constrain these fascinating problems.
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Synthetic Visibilities
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Some References for Stellar Atmospheres

* Lecture Notes: “Radiative Transfer in Stellar Atmospheres” -- R. J. Rutten     
http://www.astro.uu.nl/~rutten/node20.html  (and references there in)

* Introduction to Stellar Astrophysics: Volume 2: Stellar Atmospheres
E.  Böhm-Vitense (Cambridge UP)

* The Observation and Analysis of Stellar Photospheres 
D. Gray (Cambridge UP)

* Introduction to Stellar Atmospheres and Interiors
E. Novotny (Oxford)

* Kinetic Theory of Particles and Photons:  Theoretical Foundations of Non-
LTE Plasma Spectroscopy -- J. Oxenius (Springer)

* The  Analysis of Star Light: One hundred and fi fty years of astronomical
spectroscopy -- J. B. Hearnshaw 

* Mapping the Spectrum - Techniques of visual representation in research
and teaching -- K. Hentschel (Oxford)


