Calibrator Selection

M. J. Creech-Eakman Jet Propulsion Lab Michelson Summer School July 9, 2003

Brief Overview

Why and how to pick a calibrator?
MSC calibration tools
PTI, KI, CHARA, NPOI and VLTI
Target vetting criteria
Special cases and other considerations

What exactly is calibration?

XInterferometer system response to an unresolved source is system visibility
△Perfect Interferometer V² = 1
△Real Interferometer System V² ~ 0.75 *→ Pick only unresolved calibrators to first order*X This may not be possible in practice

△e.g. PTI calibrators, CHARA calibrators

Unresolved sources for PTI

Unresolved sources for CHARA

Comparison from getCal

₩PTI

 1.0 mas K band size (for 110 m baseline)
 63 potential calibrators all LC in randomly chosen 20° FOV
 This assumes limiting K mag of 5.0

#CHARA

- O.34 mas K band size (for 330 m baseline)
 - X4 potential calibrators all LC in same randomly chosen 20° FOV using K mag of 5.0
 - ☑ 47 potential calibrators in same FOV if K mag is raised to 7.0

Why do we care about calibration?

#Interferometer response function System visibility - uniform disk model $|V|^2 = (2 J_1(x) / x)^2$ where $x = \pi B \vartheta / \lambda$ **#**System response ☐ geometry with respect to target ▲ brightness ☐ color (spectral type) △bolometric flux - $F_{bol} = \pi \sigma T^4/m$ where m best fit factor

What helps us?

#Known Solutions \bigtriangleup binaries, resolved stars, circularly symmetric, simple geometry, limb-darkening, etc. **#**Peripheral Knowledge estimated angular diameter \bigtriangleup astrophysics of source (e.g. variability, lines) \bigtriangleup spectral energy distribution (SED) ☐ Hipparcos/SIMBAD/ADS classifications **#**Scientific Experiment - clear goals

Tools - getCal and gcGui

Written by A. Boden as part of PTI/KI reduction tools suite. Now upgraded and maintained by MSC at IPAC/Caltech for use with several interferometers.
 getCal is original command line interface
 gcGui is updated GUI with most common functions and additional modules for added functionality

getCal GUI: The Basics

name of object

List of potential calibrators

List of potential calibrators

List of potential calibrators

_	getCal Return Iambda_gem
	Veroi/msc/mscSoftwars/src/tools/slaming/detcal/getcal_2_s/getCal_targetName_lambda_gen_
	HHH CUI optolog from optool v2 Eboto1 HHH
	### GUI catalog from getCal v2.5beta1 ### # Resolving target lambda gem via SIMBAD
	# target HD 56537
	HDC56537 07 18 05 579 +16 32 25 379 -0.048 -0.038 3 6 3 5 0 11 A3V 0.0 xxx xxx trg # HIP 33202 (HD 50635) has his multiple component flag set to C
	<pre># the C designation indicates solutions were found for individual components # 2 components: # A component V= 4.792</pre>
	# 2 components: # A component V= 4.792
	# B component V= 7.803 at sep 7.19 arcsec/PA 146 deg
	HDC50635 06 54 38.636 +13 10 40.178 0.072 -0.078 4.7 4.0 0.32 FOVP 6.6 0.55+/-0.2 cal HD # HIP 34608 (HD 54563) has his multiple component flag set to 0
	# Warning: the O designation indicates an orbital solution was found
	# with photocentric SMA 4.24 mas, 113.3460 day period HDC54568 07 10 06.679 +21 14 49.147 -0.187 -0.473 6.4 4.5 0.88 G9V 5.1 0.36+/-0.4 cal HDC
	# HIP 34909 (HD 55383) has his variability flag set (2)
	# with 0.105 mag scatter in 88 observations # HIP 34909 (HD 55383) has his multiple component flag set to C
	# the C designation indicates solutions were found for individual components
	# 2 components: # A component V= 5.711
	# D component V= 5.801 at sep 0.12 arcsec/PA 14 deg
	# HIP 34909 (HD 55383) has his astrometric source flag set to S # with solution quality listed as B
	# and a listed separation between components of 0.121 arcsec
	HBC55383 07 13 22.276 +16 09 32.278 0.015 -0.042 5.1 2.7 1.65 K3V 1.2 0.78+/-1.5 cal HDC HBC57006 07 19 47.646 +07 08 34.611 0.062 -0.059 5.9 4.6 0.54 F8V 9.4 0.33+/-0.3 cal HDC
	# HIP 36188 (HD 58715) has his variability flag set (1)
	# with 0.005 mag scatter in 65 observations HDC58715 07 27 09.043 +08 17 21.536 -0.051 -0.038 2.9 3.1 -0.10 B8Vvar 8.5 0.74+/-0.4 cal
V	
	Save Simbad Browser Close

Hipparcos Flags

#Variability (V) - classed as a number depending upon mag. of variations \mathcal{H} Orbital solution (O) - orbital solution found with SMA separation and period **#**Components solution (C) - individual components in multiple system resolved and separated with PA **#**Stochastic Motion (X) **#**Acceleration or higher order terms (G)

Bolometric flux information

Photometric fits...

Sky coverage - annually and nightly

1	getCal GUI v0.56dev (getCal v2.5beta1)							
F	ile Help							
Ob	ject Designation/Pos]ambda_gem 🔷 hame 💠 HD 💠 HIP 💠 Pos							
	📕 No Calibrators 🗔 LC V 🗔 LC III 🗔 LC I 📮 Max Diam (mas)							
	🗖 Calibrator Search Radius							
	🗖 Min V 🗖 Max V 🗖 Min K 🗖 Max K							
	🖬 Simbad Query							
	🍯 Timing Info 📕 Observing Calendar Display 🔽 Timing Display 🔽 u-v Display							
	Palomar (PTI) 💻 Baseline Selection							
Γ	Zenith Angle Limit 🔲 Delay Limit 💭 Delay Bias							
	🗇 Select Date							
🗖 fbol diameters								
🗖 Cal Script Composition 🗖 2Mass IR Phot 📮 Parallax 📮 Keck sky fmt 📮 xEphem Display								
	Dispatch Reset Quit							

Annual calendar

Nightly scheduling

UV Information

Check your target

Do your homework...

Use this feature!

Beware certain results!

File Edit View Go Communi	cator					Help
🗳 🗳 🕉 🐴	<u>é</u>	à 🔳	S	Ô		N
Back Forward Reload Home	Search Net	scape Print	Security	Shop	Stop	
📲 Bookmarks 🤳 Location: ht	tp://adsabs	harvard.edu/	'cgi-bin/	nph-abs	_connect?dl	o_key=AST&si 🕖 🍘 What's Relate
🥒 Internet 📺 Lookup 📺 New&C	Cool					
Kichichi, A.; Calamai, G.; Leinert, Stecklum, B.; Trunkovsky, E. M.	C.; NEW DE	ary stars discov	verea by ta	narocc	uitations. II.	
<u>1994A&AS108359G</u>	0.562	12/1994	<u>A</u> E G	3	<u>rcs</u>	Occultation and
Ginestet, N.; Carquillat, J. M.; Jaschek, M.; Jaschek, C.	Spectral MK star	classifications : idards.	in the near	infrared	l of stars with	binary with 6.1
<u>1984PASP96105H</u>	0.562	01/1984	<u>A</u> F (3	<u>RC</u>	year period,
Hartkopf, W. I.; McAlister, H. A.	Binary s	tars unresolved	by speckl	e interfe	rometry. III	unresolved via
<u>1958ApJ128572B</u>	0.562	11/1958	<u>A</u> E (<u>3</u> D	<u>R C S</u>	speckle
Bahng, J. D. R.	Multicol	or photoelectric	: photomet	ry of sta	rs with comp	• techniques
<u>1954 ApJ119146S</u>	0.562	01/1954	A E G	<u>}</u>	<u>c</u> <u>s</u>	U
^a 100%						

Calibrator Vetting Criteria

Basic Information Resolved/Unresolved Spectral Type, SED & distance ✓Singular or apparently so (Hipparcos/Simbad) Sky coverage - compatibility with target(s) **WUV** Track & Annual availability △Magnitude (SNR) ⊠ Different if fringe tracking or scanning

Estimated Angular Diameter Spectral Type Estimated bolometric flux SIMBAD/ADS - Red Flags Sanity check (SpTy, distance, magnitudes) ☑Variability Double/confused **⊠**Fast rotator ☑Calibration standard Papers - how many, what types, anything odd Real data - acid test (un)resolved nature from data ⊠nightly and long-term variations SNR, color, other "gotchas"

Real world example

Take some data

I didn't do my homework...

NASA Astrophysics Data System (ADS)

Query Results from the Astronomy Database

Selected and retrieved ${f 10}$ abstracts.

Bibcode Authors	Score Title	Date		<u>List of Links</u> <u>Access Control Help</u>					
<u>1999Obs119272G</u>	1.000	10/1999	<u>F G</u>	<u>R C</u>	<u>s</u>	<u>o u</u>			
Griffin, R. F.	Spectroscopic binary orbits from photoelectric radial velocities. Paper 148: HR 7955								
<u>19990bs11981G</u>	1.000	04/1999	<u>F G</u>	<u>R</u>	<u>s</u>	<u>o u</u>			
Griffin, R. F.	Spectroscopic binary orbits from photoelectric radial velocities. Paper 145: HR 6797								
<u>1997Obs117288G</u>	1.000	10/1997	<u>F G</u>	<u>R C</u>	<u>s</u>	<u>o u</u>			
Griffin, R. F.; Mayor, M.; Pont, F.; Udry, S.	Spectroscopic binary orbits from photoelectric radial velocities. Paper 136: HD 7000								
<u>1997Obs117208G</u>	1.000	08/1997	<u>F G</u>	<u>R C</u>	<u>s</u>	<u>o u</u>			
Griffin, R. F.	Spectrosc	opic binary orb	its from photoelec	tric radial	veloci	ties. Paper 135: HI	R 2918		

Next Steps

#Collect and verify integrity of data **Have at least two calibrators** Settimate angular sizes to get system visibility △check for consistency **#**Choose a model for your target observation (uniform disk, gaussian, binary system, etc.) **#**Reduce, analyze & publish!

How do you resolve conflicts in calibrator sizes?

#Minimize chisquared function for all
calibrators

Special Circumstances

Sometimes to do the experiment correctly you need a calibrator (control star) that lacks some special feature you expect your target has

- Image: Altair, stars with outflows)
- □ Ine emission or spectral features (e.g. P Cyg, narrow-band studies)

Altair

- HD187691 F8V @ 1.6° sep. and about 0.72 mas in diameter
- HD187923 GOV @ 2.8° sep. and about 0.55 mas in diameter
- Comparison to Vega as a bright, nearby, resolved calibrator
- **%** van Belle et al., 2001, ApJ, 559, 1155.

Zeta Geminorum

#Classical GOIbvar cepheid △clear evidence for pulsation possibly want to use a resolved calibrator of similar size to show interferometric stability △Lane et al., 2000,

Nature, 407.

Summary

#Choose calibrators carefully

Use physical information (distance, spectral type, SED) and literature search to determine best calibrators for experiment

#Consider goals of experiment

 Spectral or spatial resolution may require control stars

#Reduce data in a timely fashion
#Publish, publish, publish!

Software:

His work has made the use of software produced by the Michelson Science Center at the California Institute of Technology

Thank you for your attention!