Optical interferometry – a gentle introduction to the theory

Chris Haniff Astrophysics Group, Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE, UK

Motivation

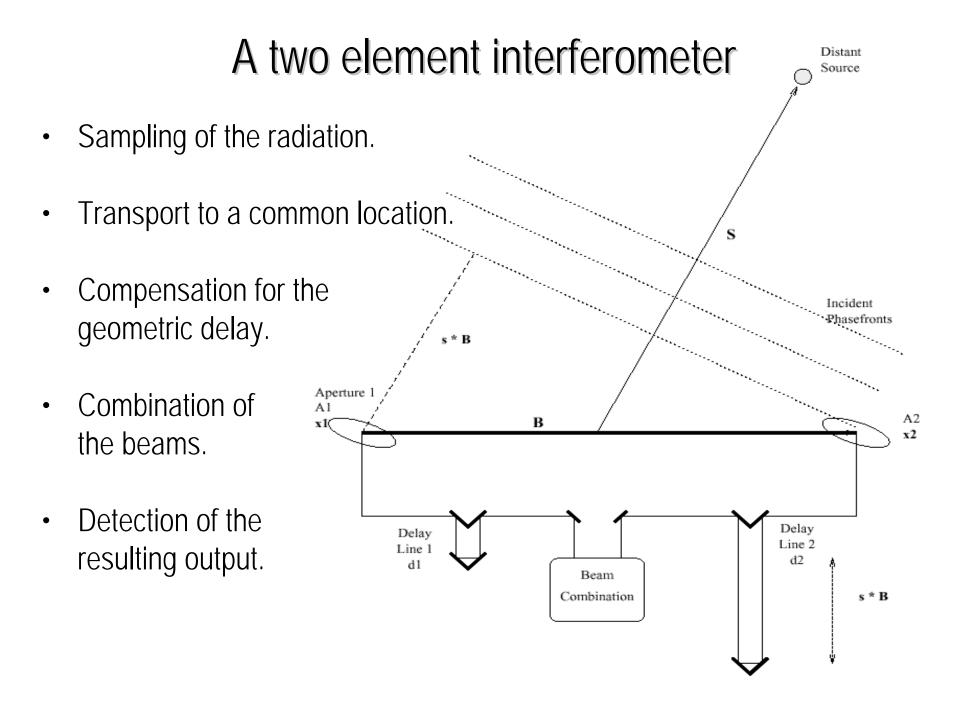
- A Uninterested: I'm here for the holiday.
- B Might be interested: I'm sceptical: prove it to me!
- C Possibly interested: I need to learn more.
- D Interested: I want to work to understand this.

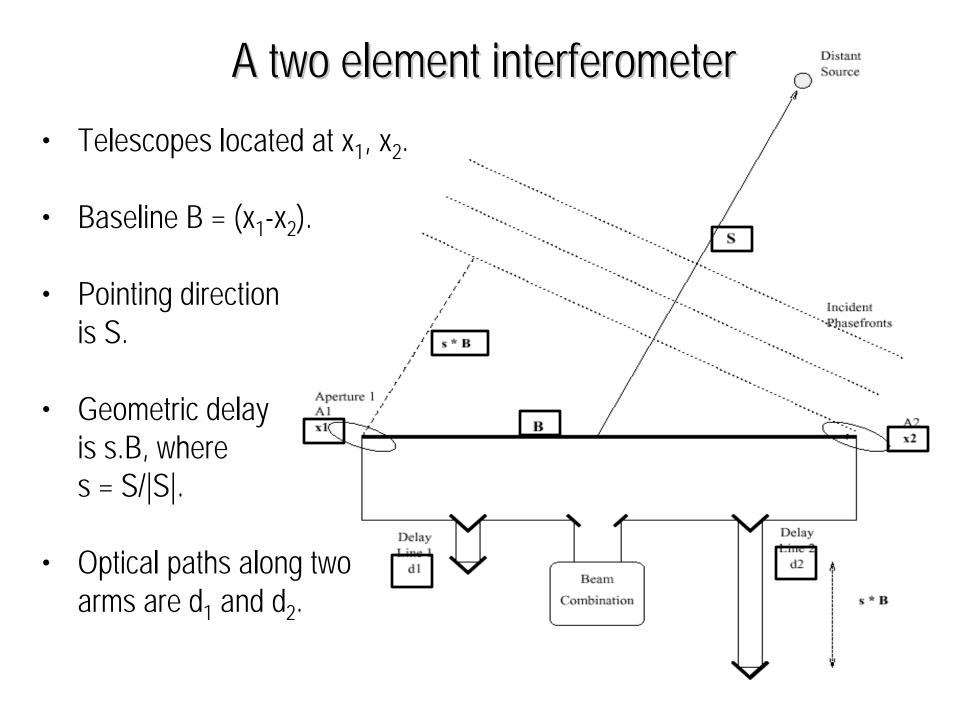
What we will cover

- What no one ever tells you (or admits to).
- What an interferometer does.
- The output of an interferometer.
- How to describe interference fringes.
- What interferometers tell you about sources (qualitative).
- What interferometers tell you about sources (quantitative).
- Visibility functions.
- Imaging with interferometers.

Preamble

- Learning interferometry is like learning to surf:
 - You have to want to do it.
 - You start in the shallows.
 - Having an expensive surf-board doesn't help.
 - You don't have to know how to make surf-boards.
 - Knowing how to surf won't help you escape a charging tiger.
- This is a school:
 - I will assume you know nothing you should assume the same.
 - Don't guess physics is not intuitive.
 - Ask questions last year those who didn't went away confused.
 - If you don't understand ask.
- I am not trying to sell you a surf board:
 - Interferometry is a niche technique it's not the solution to every astronomical problem.





Key Ideas 1

- Functions of an interferometer:
 - Sampling.
 - Optical path matching.
 - Combination of electric fields.
 - Detection.
- Nomenclature:
 - Baseline.
 - Pointing direction.
 - Geometric delay.

The output of a 2-element interferometer (i)

- At combination the E fields from the two apertures can be described as: $-\psi_1 = A \exp(ik[s.B + d_1]) \exp(-i\omega t)$ and $\psi_2 = A \exp(ik[d_2]) \exp(-i\omega t)$
- So, summing these at the detector we get:

 $\Psi = \psi_1 + \psi_2 = A \left[\exp \left(ik[s.B + d_1] \right) + \exp \left(ik[d_2] \right) \right] \exp \left(-i\omega t \right)$

• And hence the time averaged intensity, $\langle \Psi \Psi^* \rangle$, will be given by:

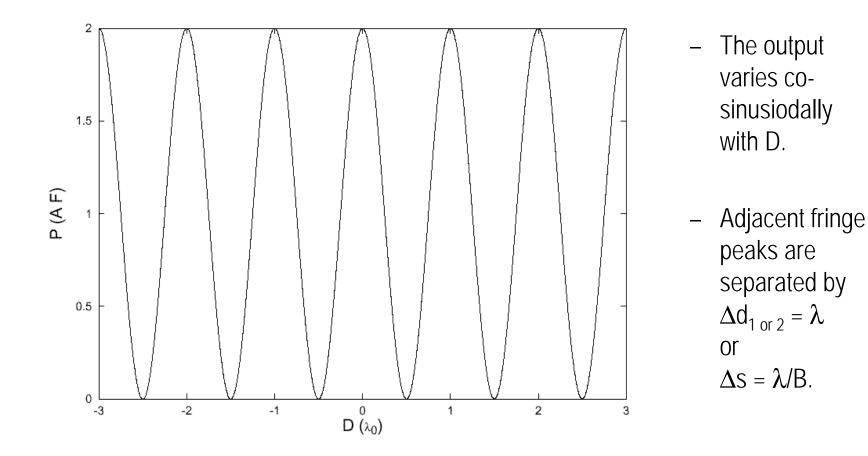
 $\begin{array}{l} \langle \Psi \Psi^* \rangle & \propto \langle \left[\exp\left(ik[s.B + d_1] \right) + \exp\left(ik[d_2] \right) \right] \times \left[\exp\left(-ik[s.B + d_1] \right) + \exp\left(-ik[d_2] \right) \right] \rangle \\ \\ & \propto & 2 + 2\cos\left(k\left[s.B + d_1 - d_2 \right] \right) \\ \\ & \propto & 2 + 2\cos\left(kD \right) \end{array}$

Note, here $D = [s.B + d_1 - d_2]$.

This is a function of the path lengths, d_1 and d_2 , the pointing direction and the baseline.

The output of a 2-element interferometer (ii)

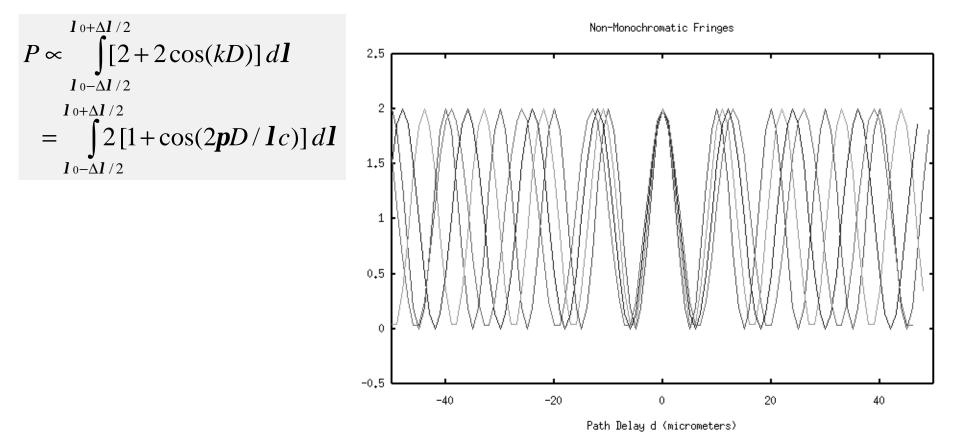
Detected power, P = $\langle \Psi \Psi^* \rangle \propto 2 + 2 \cos (k [s.B + d_1 - d_2])$ $\propto 2 + 2 \cos (kD)$, where D = [s.B + d_1 - d_2]



- The output of the interferometer is a time averaged intensity.
- It has a cosinusoidal variation these are the "interference fringes".
- The cosinusoidal variation is a function of k.D, which in turn can depend on many things:
 - The wavevector, $k = 2\pi/\lambda$.
 - The baseline, B.
 - The pointing directions, s.
 - The optical path difference between the two arms of the interferometer, d_1 - d_2 .
- Note that if you adjust things correctly, the output is fixed. This is what most interferometers actually aim to do.

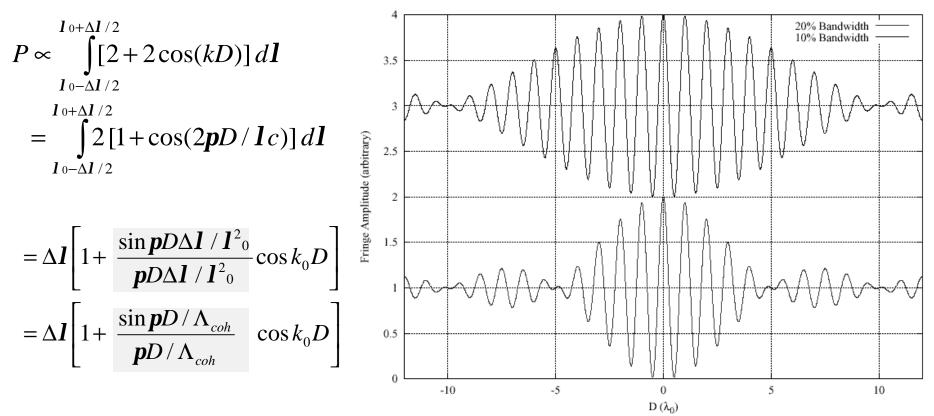
Extension to polychromatic light

- We can integrate the previous result over a range of wavelengths:
 - E.g for a uniform bandpass of $\lambda_0 \pm \Delta \lambda/2$ (i.e. $\nu_0 \pm \Delta \nu/2$) we obtain



Extension to polychromatic light

- We can integrate the previous result over a range of wavelengths:
 - E.g for a uniform bandpass of $\lambda_0 \pm \Delta \lambda/2$ (i.e. $\nu_0 \pm \Delta \nu/2$) we obtain:



So, the fringes are modulated with an envelope with a characteristic width equal to the coherence length, $\Lambda_{coh} = \lambda_0^2 / \Delta \lambda$.

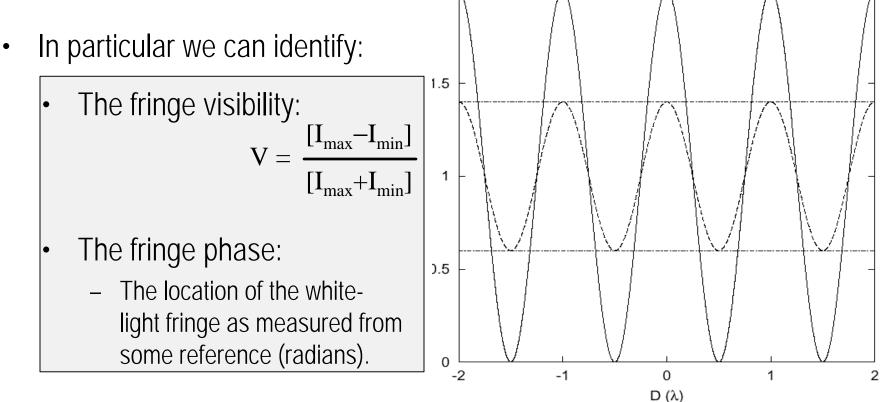
- The response for a polychromatic source is given by integrating the intensity response for each color.
- This alters the interferometric response and can lead to "removal" of the fringe modulation completely:
 - The correct response is only achieved when k $[s.B + d_1 d_2]) = 0$.
 - This is the so called white-light condition.

This is the primary motivation for matching the optical paths in an interferometer and correcting for the geometric delay.

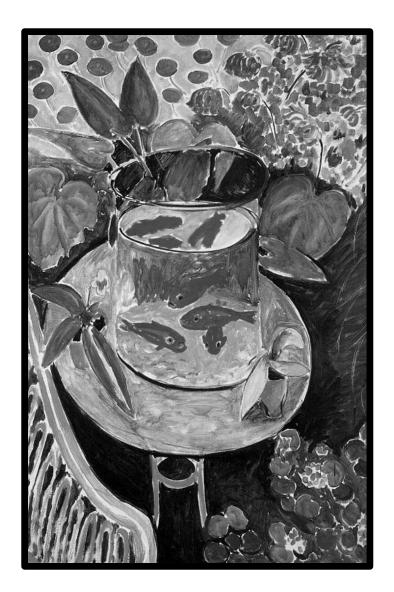
- The narrower the range of wavelengths detected, the smaller is the effect of this modulation:
 - This is usually quantified via the coherence length, $\Lambda_{coh} = \lambda_0^2 / \Delta \lambda$.
 - But narrower bandpasses mean less light!

Fringe parameters of interest

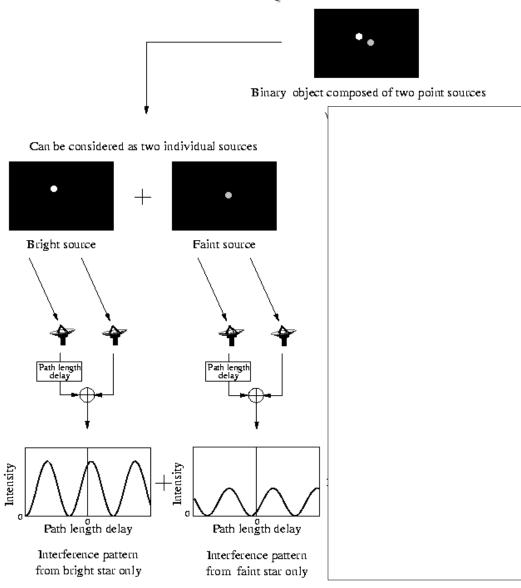
From an interferometric point of view the key features of any interference fringes are their modulation and their location with respect to some reference point.



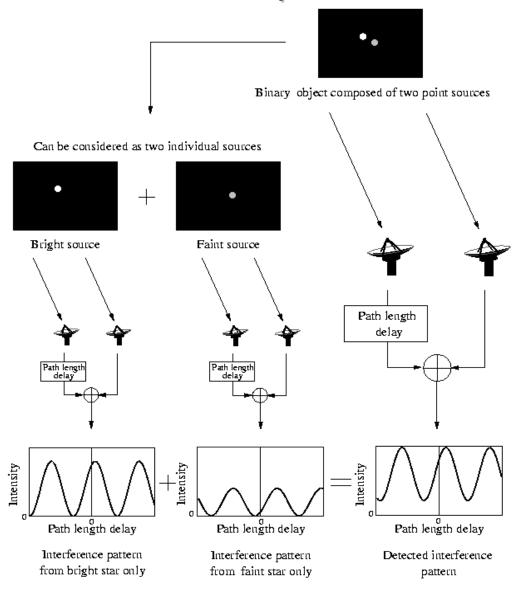
- The parameters of interference fringes that we are usually interested in are:
 - The fringe contrast (excluding any finite bandwidth effects).
 - The fringe phase.
- We are usually not interested in:
 - The fringe period.
- The question you should all be asking now is:
 - Why is it that <u>these</u> are the parameters of interest?
 - And what do they tell us?



Heuristic operation of an interferometer



Heuristic operation of an interferometer



- The resulting fringe pattern has a modulation depth that is reduced with respect to that from each source individually.
- The positions of the sources are encoded in the fringe phase.

- A general source can be described as a superposition of point sources.
- Each of these produces its own interference pattern.
- The superposition of these is what is actually measured.
 - Technically this is know as the "spatially-incoherent source" approximation.

The modulation and phase of the resulting fringe pattern encode the source structure (albeit in an apparently complicated way).

Response to a distributed source

- Consider looking at an incoherent source whose brightness on the sky is described by I(s). This can be written as I($s_0 + \Delta s$), where s_0 is the pointing direction, and Δs is a vector perpendicular to this.
- The detected power will be given by:

$$P(s_0, B) \propto \int I(s) \left[1 + \cos kD\right] d\Omega$$

$$\propto \int I(s) \left[1 + \cos k(s.B + d_1 - d_2)\right] d\Omega$$

$$\propto \int I(s) \left[1 + \cos k([s_0 + \Delta s].B + d_1 - d_2)\right] d\Omega$$

$$\propto \int I(s) \left[1 + \cos k(s_0.B + \Delta s.B + d_1 - d_2)\right] d\Omega$$

$$\propto \int I(\Delta s) \left[1 + \cos k(\Delta s.B)\right] d\Omega'$$

The van Cittert-Zernike theorem (i)

- Consider now adding a small phase delay, δ , to one arm of the interferometer. The detected power will become:

$$P(s_0, B, \boldsymbol{d}) \propto \int I(\Delta s) \left[1 + \cos k(\Delta s.B + \boldsymbol{d})\right] d\Omega'$$

$$\propto \int I(\Delta s) \, d\Omega' + \cos k \boldsymbol{d} \cdot \int I(\Delta s) \cos k(\Delta s.B) \, d\Omega'$$

$$-\sin k \boldsymbol{d} \cdot \int I(\Delta s) \sin k(\Delta s.B) \, d\Omega'$$

• We now define something called the complex visibility V(k,B):

$$V(k,B) = \int I(\Delta s) \exp[-ik\Delta s.B] \, d\Omega'$$

so that we can write our interferometer output as:

 $P(s_0, B, d) \propto \int I(\Delta s) \ d\Omega' + \cos k d \operatorname{Re}[V] + \sin k d \operatorname{Im}[V]$

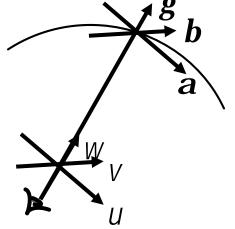
$$P(s_0, B, d) = I_{total} + \operatorname{Re} \left[V \exp[-ikd] \right]$$

What is this complex visibility thing?

• Lets assume $s_0 = (0,0,1)$ and Δs is $\approx (\alpha, \beta, 0)$, with α and β small angles measured in radians.

$$V(k,B) = \int I(\Delta s) \exp[-ik\Delta s.B] d\Omega'$$

= $\int I(a, b) \exp[-ik(aB_x + bB_y)] da db$
= $\int I(a, b) \exp[-i2p(au + bv)] da db$



- Here, $u (= B_x/\lambda)$ and $v (= B_y/\lambda)$ are the projections of the baseline onto a plane perpendicular to the pointing direction.
 - These are usually referred to as spatial frequencies and have units of rad⁻¹.

So, the complex visibility is the Fourier Transform of the source brightness distribution.

The van Cittert Zernike theorem (ii)

- We can put this all together as follows:
- Our interferometer measures $P(s_0, B, d) = I_{total} + \operatorname{Re}[V \exp[-ikd]]$
- So, if we make measurements with, say, two value of δ = 0 and $\lambda/4$, this recovers the real and imaginary parts of the complex visibility.
- And, since the complex visibility is nothing more than the Fourier transform of the brightness distribution, we have our final result:

The output of an interferometer measures the Fourier transform of the source brightness distribution.

This is the van Cittert-Zernike theorem.

- The complex visibility is also known as the "spatial coherence" function.
- Since the FT is a linear transform, if we know the complex visibility we can recover the source brightness distribution.
- Since the visibility function is complex, it has an amplitude and a phase.
- The amplitude and phase of the interference fringes we spoke of earlier, are actually the amplitude and phase of the complex visibility.
- To measure these quantities we have to adjust D.
- A measurement from a single interferometer baseline gives a measurement of one value of the FT of the source brightness distribution.
- Long interferometer baselines measure small structures on the sky, and short baselines, large structures.

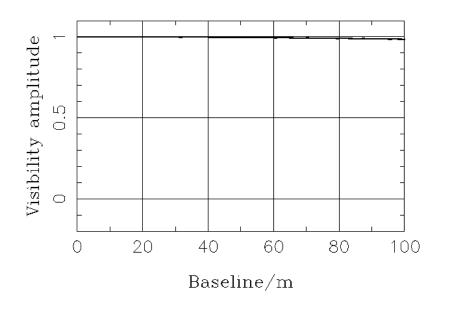
Visibility functions of simple sources (i)

 $V(u) = \int I(\alpha) e^{-i2\pi(ua)} d\alpha / \int I(\alpha) d\alpha$

• Point source of strength A₁ and located at angle α_1 relative to the optical axis.

 $V(u) = \int A_1 \delta(\alpha - \alpha_1) e^{-i2\pi(u\alpha)} d\alpha / \int A_1 \delta(\alpha - \alpha_1) d\alpha$ $= e^{-i2\pi(u\alpha_1)}$

 $0.5\ {\rm mas}$ diameter uniform disk at 2.2 microns



- The visibility amplitude is unity $\forall u$.
- The visibility phase varies linearly with $u = B/\lambda$.
- Since |V| is close to unity, the interference fringes have high contrast.

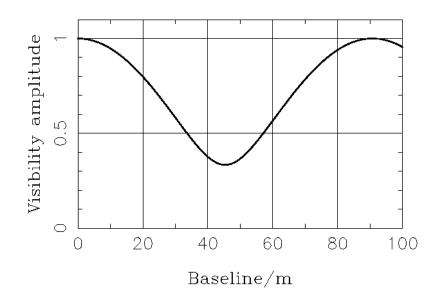
Visibility functions (ii)

$$V(u) = \int I(\alpha) e^{-i2\pi(ua)} d\alpha / \int I(\alpha) d\alpha$$

• A double source comprising point sources of strength A_1 and A_2 located at angles 0 and α_2 relative to the optical axis.

$$/(u) = \int [A_1 \delta(\alpha) + A_2 \delta(\alpha - \alpha_2)] e^{-i2\pi(u\alpha)} d\alpha / \int [A_1 \delta(\alpha) + A_2 \delta(\alpha - \alpha_2)] d\alpha$$
$$= [A_1 + A_2 e^{-i2\pi(u\alpha_2)}] / [A_1 + A_2]$$

5 mas binary with 2:1 flux ratio at 2.2 microns



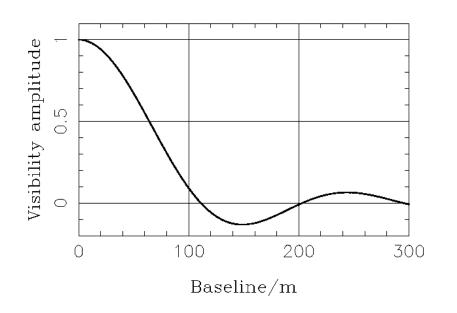
- The visibility amplitude and phase oscillate as functions of *u*.
- To identify this as a binary, baselines from $0 \rightarrow \lambda/\alpha_2$ are required.
- The modulation of the visibility function tells us the separation and brightness ratio of the components.

Visibility functions (iii)

 $V(u) = \int I(\alpha) e^{-i2\pi(ua)} d\alpha / \int I(\alpha) d\alpha$

• A uniform on-axis disc source of diameter θ . $V(u_r) \propto \int^{\theta/2} \rho J_0(2\pi\rho u_r) d\rho$ $= 2J_1(\pi\theta u_r) I(\pi\theta u_r)$

5 mas diameter uniform disk at 2.2 microns



- To identify this as a disc requires baselines from $0 \rightarrow \lambda/\theta$ at least.
- The visibility amplitude falls rapidly as *u_r* increases.
- Information on scales smaller than the disc diameter correspond to values of *u_r* where V << 1, where the interference fringes have very low contrast.

- Unresolved, sources have visibility functions that remain high, giving produce high contrast fringes for all baseline lengths.
- Resolved sources have visibility functions that fall to low values at long baselines, giving fringes with very low contrast.

=> Fringe parameters for resolved sources will be difficult to measure.

- Imaging with many resolution elements generally needs measurements where the fringe contrast is both high and low (to pick out large scale and small scale features respectively).
- To usefully constrain a source, the visibility function must be measured adequately. Measurements on a single, or small number of, baselines are normally not enough for unambiguous image recovery.

Introduction to interferometric imaging

- The visibility function, V(u, v) is the Fourier transform of the source brightness distribution: $V(u, v) = \int I(a, b) \exp[-i2p(au + bv)] da db$
- So the idea is to measure V for as many values of u and v as possible & perform an inverse FT: $\iint V(u,v) \exp[+i2\mathbf{p}(u\mathbf{a}+v\mathbf{b})] du dv = I_{norm}(\mathbf{a},\mathbf{b})$
- But since what we measure is a sampled version of *V(u, v)*, what we actually recover is the so-called "dirty map":

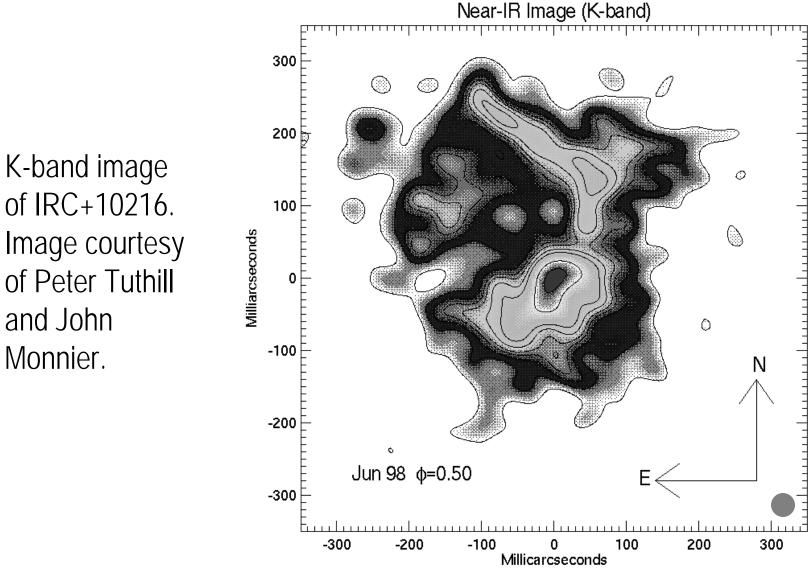
$$\iint S(u,v) V(u,v) \exp[+i2\mathbf{p}(u\mathbf{a}+v\mathbf{b})] \, du \, dv = I_{dirty}(\mathbf{a},\mathbf{b})$$
$$= I_{norm}(\mathbf{a},\mathbf{b}) * B_{dirty}(\mathbf{a},\mathbf{b})$$

 $B_{dirty}(I,m)$ is the Fourier transform of the sampling distribution, and is known as the dirty-beam.

Dirty (and corrected) interferometric images

 Raw interferometric maps generally look awful - but correcting for dirty beam (known as deconvolution- CLEAN, MEM, WIPE) is straightforward.

A real astronomical example



- Imaging with an interferometer => measuring the visibility function for a wide range of baselines.
- It also => measuring its amplitude and phase.
- The map you get will ONLY contain information corresponding to the baselines you measured.
 - This applies to conventional imaging as well
- There is no such thing as the "correct" image.

Summary

- Interferometers are machines to make fringes.
- The fringe modulation and phase tell you what you are looking at.
- More precisely, these measure the amplitude and phase of the FT of the source brightness distribution.
- A measurement with a given interferometer measures one value of the FT of the source brightness distribution.
- Multiple baselines are obligatory to build up an image.
- Once many visibility measurements are made, an inverse FT delivers a representation of the source that may (or may not) be useful!

