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MotivationMotivation

• A – Uninterested: I’m here for the holiday.

• B – Might be interested: I’m sceptical: prove it to me!

• C – Possibly interested: I need to learn more.

• D – Interested: I want to work to understand this.
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What we will coverWhat we will cover

• What no one ever tells you (or admits to).
• What an interferometer does.
• The output of an interferometer. 
• How to describe interference fringes.
• What interferometers tell you about sources (qualitative).
• What interferometers tell you about sources (quantitative).
• Visibility functions.
• Imaging with interferometers.
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PreamblePreamble

• Learning interferometry is like learning to surf:

• I am not trying to sell you a surf board:
– Interferometry is a niche technique - it’s not the solution to every astronomical 

problem.

• This is a school:

– You have to want to do it.
– You start in the shallows.
– Having an expensive surf-board doesn’t help.
– You don’t have to know how to make surf-boards.
– Knowing how to surf won’t help you escape a charging tiger.

– I will assume you know nothing - you should assume the same.
– Don’t guess - physics is not intuitive.
– Ask questions - last year those who didn’t went away confused.
– If you don’t understand ask.
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A two element interferometerA two element interferometer

• Sampling of the radiation.

• Transport to a common location.

• Compensation for the
geometric delay.

• Combination of
the beams.

• Detection of the
resulting output.
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A two element interferometerA two element interferometer

• Telescopes located at x1, x2.

• Baseline B = (x1-x2).

• Pointing direction
is S.

• Geometric delay
is s.B, where
s = S/|S|.

• Optical paths along two
arms are d1 and d2.
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Key Ideas 1Key Ideas 1

• Functions of an interferometer: 
– Sampling.
– Optical path matching.
– Combination of electric fields.
– Detection.

• Nomenclature:
– Baseline.
– Pointing direction.
– Geometric delay.
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The output of a 2The output of a 2--element interferometer (i)element interferometer (i)

• At combination the E fields from the two apertures can be described as:
– ψ1 = A exp (ik[s.B + d1]) exp (-iωt) and ψ2 = A exp (ik[d2]) exp (-iωt)

〈ΨΨ*〉 ∝ 〈 [exp (ik[s.B + d1]) + exp (ik[d2])] × [exp (-ik[s.B + d1]) + exp (-ik[d2])] 〉

∝ 2 + 2 cos ( k [s.B + d1 - d2] )
∝ 2 + 2 cos (kD)

Ψ = ψ1 + ψ2 = A [exp (ik[s.B + d1]) + exp (ik[d2])] exp (-iωt)

• So, summing these at the detector we get:

Note, here D = [s.B + d1 - d2].
This is a function of the path lengths, d1 and d2, the pointing direction and the baseline.

• And hence the time averaged intensity, 〈ΨΨ*〉, will be given by:
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The output of a 2The output of a 2--element interferometer (ii)element interferometer (ii)
Detected power, P =  〈ΨΨ*〉 ∝ 2 + 2 cos (k [s.B + d1 - d2])

∝ 2 + 2 cos (kD), where D = [s.B + d1 - d2]

– The output
varies co-
sinusiodally
with D.

– Adjacent fringe
peaks are
separated by
∆d1 or 2 = λ
or
∆s = λ/B.
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Key ideas 2Key ideas 2

• The output of the interferometer is a time averaged intensity.
• It has a cosinusoidal variation - these are the “interference fringes”. 
• The cosinusoidal variation is a function of k.D, which in turn can depend 

on many things:
– The wavevector, k = 2π/λ.
– The baseline, B.
– The  pointing directions, s.
– The optical path difference between the two arms of the interferometer, d1-d2.

• Note that if you adjust things correctly, the output is fixed. This is what 
most interferometers actually aim to do.
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• We can integrate the previous result over a range of wavelengths:
– E.g for a uniform bandpass of λ0 ± ∆λ/2 (i.e. ν0 ± ∆ν/2) we obtain

Extension to polychromatic lightExtension to polychromatic light
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• We can integrate the previous result over a range of wavelengths:
– E.g for a uniform bandpass of λ0 ± ∆λ/2 (i.e. ν0 ± ∆ν/2) we obtain:
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So, the fringes are modulated with an envelope with a characteristic width equal to 
the coherence length, Λcoh = λ2

0/∆λ. 
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Key ideas 3Key ideas 3

• The response for a polychromatic source is given by integrating the 
intensity response for each color.

• This alters the interferometric response and can lead to “removal” of the 
fringe modulation completely:
– The correct response is only achieved when k [s.B + d1 - d2]) = 0.
– This is the so called white-light condition.

This is the primary motivation for matching the optical paths in an 
interferometer and correcting for the geometric delay.

• The narrower the range of wavelengths detected, the smaller is the 
effect of this modulation:
– This is usually quantified via the coherence length, Λcoh = λ2

0/∆λ.
– But narrower bandpasses mean less light! 
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Fringe parameters of interestFringe parameters of interest

• From an interferometric point of view the key features of any interference 
fringes are their modulation and their location with respect to some 
reference point.

• In particular we can identify:

[Imax−Imin]

[Imax+Imin]
V = 

• The fringe visibility:

• The fringe phase:
– The location of the white-

light fringe as measured from
some reference (radians).
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Key ideas 4Key ideas 4

• The parameters of interference fringes that we are usually interested in 
are:
– The fringe contrast (excluding any finite bandwidth effects).
– The fringe phase.

• We are usually not interested in:
– The fringe period.

• The question you should all be asking now is:
– Why is it that these are the parameters of interest?
– And what do they tell us?
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Heuristic operation of an interferometerHeuristic operation of an interferometer
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• The resulting fringe 
pattern has a modulation 
depth that is reduced with 
respect to that from each 
source individually.

• The positions of the 
sources are encoded in 
the fringe phase.   

Heuristic operation of an interferometerHeuristic operation of an interferometer
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Key ideas 5Key ideas 5

• A general source can be described as a superposition of point sources.
• Each of these produces its own interference pattern.
• The superposition of these is what is actually measured.

– Technically this is know as the “spatially-incoherent source” approximation.

The modulation and phase of the resulting fringe pattern encode the source 
structure (albeit in an apparently complicated way).
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Response to a distributed sourceResponse to a distributed source

• Consider looking at an incoherent source whose brightness on the sky is 
described by I(s). This can be written as I(s0+∆s), where s0 is the 
pointing direction, and ∆s is a vector perpendicular to this.

• The detected power will be given by:
s s0

σ
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The vanThe van CittertCittert--ZernikeZernike theorem (i) theorem (i) 

• Consider now adding a small phase delay, δ, to one arm of the 
interferometer. The detected power will become:
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• We now define something called the complex visibility V(k,B):

so that we can write our interferometer output as:
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What is this complex visibility thing?What is this complex visibility thing?

• Lets assume s0 = (0,0,1) and ∆s is ≈ (α,β,0), with α and β small angles 
measured in radians. γ

β
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So, the complex visibility is the Fourier Transform of the source brightness 
distribution.

• Here, u (= Bx/λ) and v (= By/λ) are the projections of the baseline onto a 
plane perpendicular to the pointing direction.
– These are usually referred to as spatial frequencies and have units of rad-1.
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The van The van Cittert Zernike Cittert Zernike theorem (ii) theorem (ii) 

• We can put this all together as follows:

• Our interferometer measures

• So, if we make measurements with, say, two value of δ = 0 and λ/4, this 
recovers the real and imaginary parts of the complex visibility.

[ ]]exp[Re    ),,( 0 δδ ikVIBsP total −+=

• And, since the complex visibility is nothing more than the Fourier 
transform of the brightness distribution, we have our final result:

The output of an interferometer measures the Fourier 
transform of the source brightness distribution.

This is the van Cittert-Zernike theorem.
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Key ideas 6Key ideas 6

• The complex visibility is also known as the “spatial coherence” function.
• Since the FT is a linear transform, if we know the complex visibility we 

can recover the source brightness distribution.

• Since the visibility function is complex, it has an amplitude and a phase.
• The amplitude and phase of the interference fringes we spoke of earlier, 

are actually the amplitude and phase of the complex visibility.
• To measure these quantities we have to adjust D.

• A measurement from a single interferometer baseline gives a measure-
ment of one value of the FT of the source brightness distribution.

• Long interferometer baselines measure small structures on the sky, and 
short baselines, large structures.
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• The visibility amplitude is unity ∀ u.

• The visibility phase varies linearly with  u
(= B/λ).

• Since |V| is close to unity, the 
interference
fringes have high contrast.

Visibility functions of simple sources (i)Visibility functions of simple sources (i)

• Point source of strength A1 and located at angle α1 relative to the optical axis.
V(u) = ∫ A1δ(α-α1) e−i2π(uα) dα / ∫ A1δ(α-α1)dα

= e−i2π(uα1)

V(u) = ∫ I(α) e−i2π(uα) dα/ ∫ I(α) dα
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• The visibility amplitude and phase
oscillate as functions of  u.

• To identify this as a binary, baselines
from 0 → λ/α2 are required.

• The modulation of the visibility function
tells us the separation and brightness
ratio of the components.

• A double source comprising point sources of strength A1 and A2 located at angles 0 and
α2 relative to the optical axis.

V(u) =  ∫ [A1δ(α) + A2δ(α-α2)] e−i2π(uα) dα / ∫ [A1δ(α) + A2δ(α-α2)] dα

=  [A1+A2e−i2π(uα2)]/ [A1+A2]

Visibility functions (ii)Visibility functions (ii)
V(u) = ∫ I(α) e−i2π(uα) dα/ ∫ I(α) dα
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• A uniform on-axis disc source of diameter θ.
V(ur) ∝ ∫θ/2 ρ J0(2πρur) dρ

= 2J1(πθur) / (πθur) 

Visibility functions (iii)Visibility functions (iii)
V(u) = ∫ I(α) e−i2π(uα) dα/ ∫ I(α) dα

• To identify this as a disc requires
baselines from 0 → λ/θ at least.

• The visibility amplitude falls rapidly
as ur increases.

• Information on scales smaller than the
disc diameter correspond to values of
ur where V << 1, where the interference
fringes have very low contrast.
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Key ideas 7Key ideas 7

• Unresolved, sources have visibility functions that remain high, giving 
produce high contrast fringes for all baseline lengths.

• Resolved sources have visibility functions that fall to low values at long 
baselines, giving fringes with very low contrast. 
=> Fringe parameters for resolved sources will be difficult to measure.

• To usefully constrain a source, the visibility function must be measured 
adequately. Measurements on a single, or small number of, baselines 
are normally not enough for unambiguous image recovery.

• Imaging with many resolution elements generally needs measurements 
where the fringe contrast is both high and low (to pick out large scale 
and small scale features respectively).
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• The visibility function, V(u, v) is the Fourier transform of the source 
brightness distribution:

Introduction to Introduction to interferometricinterferometric imagingimaging
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• So the idea is to measure V for as many values of u and v as possible & 
perform an inverse FT:

• But since what we measure is a sampled version of V(u, v), what we 
actually recover is the so-called “dirty map”:
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Dirty (and corrected) interferometric imagesDirty (and corrected) interferometric images

• Raw interferometric maps generally look awful - but correcting for 
dirty beam (known as deconvolution- CLEAN, MEM, WIPE) is 
straightforward. 
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A real astronomical exampleA real astronomical example

K-band image 
of IRC+10216. 
Image courtesy 
of Peter Tuthill
and John
Monnier.
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Key ideas 8Key ideas 8

• Imaging with an interferometer => measuring the visibility function for a 
wide range of baselines.

• It also => measuring its amplitude and phase.

• The map you get will ONLY contain information corresponding to the 
baselines you measured.
– This applies to conventional imaging as well

• There is no such thing as the “correct” image. 
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SummarySummary
• Interferometers are machines to make fringes.

• The fringe modulation and phase tell you what you are looking at.

• More precisely, these measure the amplitude and phase of the FT of the 
source brightness distribution.

• A measurement with a given interferometer measures one value of the 
FT of the source brightness distribution.

• Multiple baselines are obligatory to build up an image.

• Once many visibility measurements are made, an inverse FT delivers a 
representation of the source that may (or may not) be useful! 
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