Investigating Habitable Worlds: Validating and Characterizing Kepler-Identified Planet Candidates around M Dwarf Stars

Sarah Ballard Sagan Fellow University of Washington

Validating *Kepler* Planet Candidates with Transit Color Dependence

Two scenarios, same Kepler light curve:

When observed at longer wavelengths with Spitzer:

1. Transit depth is the same as measured by Kepler

2. Transit depth is different

Why M dwarfs in particular?

Nature makes more small planets around M dwarfs!

Howard et al. (2011)

Star is less luminous, so habitable zone is closer to the star
→ transits of habitable-zone planets occur more often (easier to detect, easier

Spitzer follow-up)

Star is smaller, so transits are deeper

Transits of rocky planets easier to detect, RV follow-up possible, atmospheric follow-up easier

Characterizing M Dwarfs

We cannot know the planetary equilibrium temperature or radius without first knowing the temperature and radius of the host star. M dwarfs are notoriously difficult to characterize!

Inroads from near-infrared spectroscopy (Rojas-Ayala et al. 2011) + stellar evolutionary models = more accurate M dwarf physical parameters

For example, post near-IR spectra, the following Kepler planetary candidates around M dwarfs became smaller and cooler overnight! (Muirhead et al. 2011)

	Earth [–]	T NO-	
КОІ	Radius of Planet	Radius of star	Equilibrium temp
663.02	$\bigcirc \rightarrow \bigcirc$	$\bigcirc \rightarrow \bigcirc$	436 → 341
817.01	\rightarrow	\bigcirc \rightarrow \bigcirc	370 → 327
854.01	\rightarrow	$\bullet \rightarrow \bullet$	248 → 229
899.03	\bigcirc \rightarrow \bigcirc	\bigcirc \rightarrow \bigcirc	397 → 336
947.01	\rightarrow	$\bigcirc \rightarrow \bigcirc$	353 → 294
952.03	\rightarrow	\bigcirc \rightarrow \bigcirc	365 → 328
1361.01	\rightarrow	$\bigcirc \rightarrow \bigcirc$	279 → 257