The Search for Planets at the End of the Main Sequence

Jacob Bean

- Initiated a comprehensive search for planets around the lowestmass stars
- Current survey includes 36 M2 M9 stars, mostly below 0.2 M_{sun} , median = 0.15 M_{sun}
- NIR radial velocities with CRIRES at the VLT
- Current program is being run as an ESO "Large Program" -- 33 nights over two years (2009 – 2010)
- •New gas absorption cell for calibration
- Ultimate goal of 5 m s⁻¹ per visit precision
- Aim for the detection of Neptune-mass planets in short period orbits;
 Saturn-mass in intermediate and longer period orbits
- Expand the survey in 2011+ to include ~100 stars with M < 0.2 M_{sun}

Explore the correlation between planet formation efficiency and stellar mass

Are gas giants rare around low-mass stars?

Improve the galactic planet census

These stars are the most numerous stars in the Galaxy, but yet we have very little information on the nature of their planetary systems

Identify new planets for follow-up study

Low-mass stars are the short-cut to finding transiting habitable planets

 Provide a foundation for future high-precision NIR radial velocity work

What are the important things to consider when designing the next generation of radial velocity instruments?

filled with 50 mb ammonia (NH₃)

wedged windows to eliminate fringing

gas cell goes here to enable calibration of each observation

Image credits: ESO

Method: Gas cell lines overlap for in situ calibration

High-precision radial velocities of a V=17.5 M8 star in 20 minutes

