Mapping a star with transits: orbit precession effects in the Kepler-13 system

Szabó, Gy. M.1,2, Szabó, R.2, Simon, A. E.1,2, Kiss, L. L.2, Dózsa, Á.1, Kepler Group at the Konkoly Observatory2

1Gothard Astrophysical Observatory and Multidisciplinary Research Center of Lóránd Eötvös University, 9700 Szombathely, Szent Imre herceg u. 112., Hungary
2Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, 1121 Budapest, Konkoly Th. M. út 15-17., Hungary

Synopsis

The system is a prime astrophysical laboratory showing how stellar rotation and the orbit of the planet interacts with each other. This system has uncovered fundamental processes due to this interaction (Szabó et al. 2011; 2012; 2013):

- **Light curve asymmetry** emerges due to gravity darkening of a rotating star if the transit path is oblique
 — Similar distortions has been found for other systems (e.g. Barnes et al. 2013)
- **Dynamical harmony**. Stellar rotation knows about the orbital period of close-in planets
 — Low-order resonances between stellar rotation and orbital period is a general characteristic for close-in planets (Walkowicz & Basri 2013)
Stellar rotation causes orbital precession, leading to variation of transit duration (TDV)
 — Also found in other systems (Barnes et al. 2013)
- **Stellar surface**. Due to the resonant orbit, Kepler-13 has confirmed the unexpected surface of an A-type star: there are a few well-defined spots with considerable contrast. This is in contrast with earlier expectations counting on low-contrast features extending up to a half of the stellar surface.

Dynamical harmony

Kepler-13 has been the first exoplanet system with exact spin-orbit resonance.

Stellar surface

Comparison of folded and averaged light curves three transits apart (i.e. belonging to the very same stellar surface) in thirty days data. Note the appearing compact spots that has a lifetime of ≈ 30–60 days.

References

Acknowledgement

This project has been supported by the Hungarian OTKA Grants K76816, K83790, K104607, the HUMAN MB08C 81013 grant of the MAG Zrt., KTIA URKUT_10-1-2011-0019, NSF PHY05-51164, the “Lendület-2009 Young Researchers” Program of the Hungarian Academy of Sciences and by the City of Szombathely under agreement No.S-11-1027. GyMSz and RSz were supported by the Janos Bolyai Research Fellowship of the Hungarian Academy of Sciences.