Characterizing the Cool KOIs
An Infrared Spectroscopic Survey of Kepler M Dwarf Planet-Candidate Hosts

Philip S. Muirhead (BU), Juliette Becker (Caltech), Bábara Rojas-Ayala (CAUP), Andrew Vanderburg (CFA), Jon Swift (Caltech), Gregory Feiden (Uppsala), Ellen Price (Caltech), Rachel Thorp (Caltech), Katherine Hamren (UCSC), Everett Schlain (Cornell), Kevin R. Covey (Lowell), John Asher Johnson (CFA), James P. Lloyd (Cornell)

H- and K-Band Spectra of Cool KOIs taken with the TripleSpec Spectrograph on the Palomar 200-inch Hale Telescope Ordered in increasing T_{eff}

Science Highlights!

KOI-961 / Kepler 42: A Mid-M dwarf with 3 Short-period Sub-earths

KOI-961 and its 3 Known Planets

KOI-961 / Kepler 42:

KOI-952 / Kepler 32: A Compact System of 5 Planets

Swift et al. (2013)

KOI-256: An M Dwarf / White Dwarf Binary with Gravitational Microlensing

KOI-256 / Kepler 45: A Hot Jupiter Orbiting a Metal-Rich M dwarf (Johnson et al. 2012)

Spectra provided accurate stellar properties for analysis of KOI-952's 5 planets, aka Kepler 32: A Portrait of the Planet System Through the Decades (Swift et al. 2013)

KOI-3497: A False Giant Star

KOI-3497 shows a deep CO (2-1) band head emission of a giant star, but deep Ni I & Ca I lines are consistent with a dwarf! As noted by Rojas-Ayala, an early M dwarf binary like Kepler-437 b (rich in CO) could be an even closer analog for Kepler-437 b which also has the planet candidate? image courtesy of the Rubin-40 Team, including Christian Benitez, David Krotos, and Nick Lewis.

Comparison to Dressing & Charbonneau (2013)

Left: Stellar effective temperature, metallicity and radius determinations for the stars in this sample. We determined stellar effective temperature and metallicity and using the calibrations of Rojas-Ayala et al. (2010, 2012). We then interpolated these values onto new 5-Gyr Dartmouth isochrones calculated by Gregory Feiden (Uppsala University). The new Dartmouth isochrones include stars with effective temperatures less than 3000 K (Muirhead et al. in prep).

Left: Stellar effective temperature, metallicity and radius determinations for the stars in this sample. We determined stellar effective temperature and metallicity and using the calibrations of Rojas-Ayala et al. (2010, 2012). We then interpolated these values onto new 5-Gyr Dartmouth isochrones calculated by Gregory Feiden (Uppsala University). The new Dartmouth isochrones include stars with effective temperatures less than 3000 K (Muirhead et al. in prep).

Right: Comparing Dressing & Charbonneau (2013), who used photometry to determine Cool KOI properties. Our results generally show good agreement, however, there is a slight metallicity dependence to our determinations. Dressing & Charbonneau (2013) assumed a strict prior for their metallicities determinations due to degeneracies with temperature when using photometry.