Name:	Alain Leger
Email:	alain.leger@ ias.u-psud.fr
Institution:	IAS
Title:	Implications of the value of η _earth for the choice of a spectroscopic mission - visible or thermal
Type:	IR? -
Session:	Poster
Abstract:	Future Exoplanet Telescopes and Instrumentation
	Alain Léger (IAS), Fabien Malbet (IPAG)

The present Holy Grail of exoplanetary science is the search for biosignatures on habitable planets. At least two approaches are possible for that, the spectroscopic search for O 2 and H 2 O with a monolithic telescope and a coronograph in the visible, and the search for $\mathrm{O} 3, \mathrm{CO} 2$, and $(\mathrm{H} 2 \mathrm{O})$ with a multi-mirror interferometer in the thermal IR.
We have built a simple model to estimate the number of planets that can be studied by each type of instrument for different values of their characteristic parameters as: diameter of the mirror(s), Inner Working Angle for coronograph, relevant spectral resolution, and $\eta _$earth, the mean number of terrestrial planets (1.0 to 2.0 R_earth) in the Habitable Zone of the host star. As a matter of fact, the determination of the latter is the major goal of Kepler .
We find that the two techniques are not on equal terms to face a possible low value of $\eta _$earth. More exhaustively, we provide the planet number for each instrument for sizes that seems affordable in the mid- future, as a function of η_{-}earth.

