Name:	Laurance R. Doyle
Email:	ldoyle@seti.org
Institution:	SETI Institute
Title:	3-D Atmospheric Modeling of an Earthlike Planet in a Kepler-16b Type
Type:	Orbit
Session:	Poster
Abstract:	Habitable Zone
	Co-authors on this paper are:
	Martin Heath, Manoj Joshi, Robert Haberle, Steven Kane, and Hans Deeg We will present results of 3-dimensional atmospheric modeling of an Earthlike planet in an orbit identical
	to that of the current orbit of the planet Kepler-16b. Kepler-16b represents the most extreme know
	circumbinary planet known in terms of being close to the stability limit (14%) and so represents an
	extreme, but realistic, variation in insolation to a circumbinary planet. We hope to clarify the effects of
	variable insolation in such systems on an Earthlike atmosphere by this detailed radiative transfer modeling.