New Near-IR Techniques for Precision Radial Velocities

Peter Plavchan, NASA Exoplanet Science Institute

Funding provided by: NExScI, JPL Center for Exoplanet Science
<table>
<thead>
<tr>
<th>Organization</th>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>NExScI/JPL/Caltech</td>
<td>Sean Mills, Peter Gao, Chas Beichman, John Johnson, Bertrand Mennesson, Kent Wallace, Gautam Vasisht, Pin Chen, David Ciardi, Stephen Kane, Kaspar von Braun, Keeyoon Sung, Geoff Bryden, Karl Stapelfeldt</td>
</tr>
<tr>
<td></td>
<td>Chemists: Edgardo Garcia & Nate Lewis (Caltech) FTIR: Keeyoon Sung, Linda Brown and Tim Crawford (JPL)</td>
</tr>
<tr>
<td>Carnegie DTM</td>
<td>Guillem Anglada</td>
</tr>
<tr>
<td>Georgia State</td>
<td>Russel White, Cassy Davison, Angelle Tanner</td>
</tr>
<tr>
<td>UCLA</td>
<td>Mike Fitzgerald, James Larkin, Ian McLean</td>
</tr>
<tr>
<td>Lowell</td>
<td>Lisa Prato, Christopher Crockett</td>
</tr>
<tr>
<td>IRTF</td>
<td>John Rayner, Morgan Bonnet, George Koenig, Alan Tokunaga</td>
</tr>
<tr>
<td>U Colorado / NIST</td>
<td>Steve Osterman / Scott Diddams</td>
</tr>
<tr>
<td>Glasswork</td>
<td>Rick Gerhart and Caltech glass shop, Thurston Levy and Glass Instruments Inc, Scot Howell and Mindrum Precision</td>
</tr>
</tbody>
</table>
The M Dwarf Opportunity

- 70% of main sequence stars are M dwarfs
 - Abundant within 10 pc
 - Habitable zones are closer in with shorter periods, but tidal locking an issue
 - Transits are deeper $\sim (R_p/R_\star)^2$
 - Radial velocity amplitudes are larger

- Span a factor of ~ 5 in Mass/Radius, $\sim 10^3$ in Luminosity
 - For comparison, all of AFGK stars span a factor of ~ 2.5 in Radius, ~ 5 in mass, ~ 300 in Luminosity

- M dwarfs are red, V-K > ~ 3.5
 - Only 4 >M4 with V<12
RV content of M dwarfs as a function of wavelength

3500 K ~ M3

2800 K ~ M6

Reiners et al. 2009
Why go to the Near-Infrared for RVs?

- Some non-exoplanet science:
 - With 10 cm/s long-term precision, can initiate a ~10 year survey to directly measure the expansion of the Universe with high-z galaxies
 - With a 30m telescope, can characterize non-Newtonian orbits at the Galactic Center

- “Unconventional” exoplanet science:
 - Embedded YSOs with high extinction → too red for the visible

Rho Oph
~ 2 Myr
A_J=5

DSS R 2MASS J 2MASS K_S
Why go to the Near-Infrared for RVs?

- Some non-exoplanet science:
 - With 10 cm/s long-term precision, can initiate a ~10 year survey to directly measure the expansion of the Universe with high-z galaxies.
 - With a 30m telescope, can characterize non-Newtonian orbits at the Galactic Center.

- “Unconventional” exoplanet science:
 - Embedded YSOs with high extinction \rightarrow too red for the visible
 - Constrain the formation epoch, dynamics, and migration of planets, which must take place before the primordial gas disk dissipates at \sim5 Myr, ie:

What is the youngest star with a hot Jupiter?
Why go to the Near-Infrared for RVs?

- Some non-exoplanet science:
 - With 10 cm/s long-term precision, can initiate a ~10 year survey to directly measure the expansion of the Universe with high-z galaxies.
 - With a 30m telescope, can characterize non-Newtonian orbits at the Galactic Center.

- “Unconventional” exoplanet science:
 -Embedded YSOs with high extinction → too red for the visible.
 -Young and/or active stars → Less stellar RV noise in the NIR.
 -Combine optical + NIR RVs → Characterize, identify, and perhaps remove sources of stellar RV noise for solar-type main-sequence stars.
Single Star Spot RV Noise Toy Model

Reiners et al. 2009

\[\Delta T_{\text{spot}} = 200 \text{ K} \]

RV signal [m/s]

Posters by Isabelle Boisse, Andreas Quirrenbach
NRC 2010 Decadal Survey

“The first task on the ground is to improve the precision radial velocity method With a new generation of high-resolution spectrometers in the optical and near-infrared, a velocity goal of 10 to 20 centimeters per second is realistic.”

The US RV community response*: Yes, we can do that.

Signed by over 50 of the US attendees at Penn State RV Workshop, August 2010, representing a significant fraction of the US RV community.
Our Road-Map to Addressing the Decadal Survey Challenge

- We are using CSHELL on IRTF as a testbed for several NIR RV techniques, adapted from the visible
 - 17 years old
 - 256x256 detector
 - $R \sim 45k$
 - single order spanning 5 nm @ 2.3 μm (≈ 13 Å @ 600 nm)

→ Really not what we want to be using long term, but CSHELL an excellent instrument to try new things.
Our Road-Map to Addressing the Decadal Survey Challenge

- We are using CSHELL on IRTF as a testbed for several NIR RV techniques, adapted from the visible
- We plan to apply these techniques to CSHELL’s successor, iSHELL (~2014)
 - R~70k
 - cross-dispersed immersion grating
 - ~250 nm spectral grasp
Our Road-Map to Addressing the Decadal Survey Challenge

- We are using CSHELL on IRTF as a testbed for several NIR RV techniques, adapted from the visible
- We plan to apply these techniques to CSHELL’s successor, iSHELL (~2014)
- We are conducting a design study to upgrade NIRSPEC on Keck II
 - Leverage NIRSPEC’s existing hardware investment (~$8M in 1998)
 - Cross-dispersed, Quasi-Littrow Echelle, R~33K
 - Cryogenic, temperature, pressure, gravity stabilized
 - Can use a couple of tricks to get to R~47K and then R~95K
 - Replace the detectors with H2RG’s
 - RV precision currently limited by mid-90s detectors
 - Replace the calibration unit
Techniques for Precision RVs

- Historically, ‘precision’ spectroscopy in the NIR has been anything but precise, lagging behind visible work.
- Current and future efforts span ~4 orders of magnitude in precision:
 - Telluric lines: ~25 – 100 m/s (Chris Crockett’s talk)
 - Gas absorption cells: ~5 m/s (Bean et al. 2010, this work)
 - Fiber scramblers: non-circular fiber cores (visible to date, this work)
 - Stabilized Fabry Perot etalons: potential for ~10 cm/s (visible to date)
 - Laser combs: potential for ~1 cm/s (visible + H-band: Osterman et al. 2010)
 - Uranium-Neon emission lamps (PATHFINDER + Mahadevan et al.)
 - Adaptive Optics
Choice of gas: METHANE

Why has methane been missed?
- Telluric methane!
- By using an isotopologue or deuterated methane, the reduced mass changes.
 - The ro-vibrational lines shift by ~10 nm!
Choice of gas: METHANE

Why has methane been missed?
- Telluric methane!
- By using an isotopologue or deuterated methane, the reduced mass changes.
 - The ro-vibrational lines shift by ~10 nm!
 ➔ Effectively, a whole new gas.
- Can operate at room temperature!
- Greater line density than Ammonia
Gas Cell Spectra: K-band

![Graph showing NH$_3$ and 13CH$_4$ FTIR spectra over a range of wavelengths (nm) from 2200 to 2450.](image)
Gas Cell Spectra: H-band

- NH_3 FTIR spectrum
- $^{13}CH_4$ FTIR spectrum

Wavelength (nm)
Preliminary Data Analysis

\[\sigma = 22 \text{ m/s} \]

Systematic Offset
40 m/s

Hours

RV (m/s)
Noise Floor?

Averaging N S/N ~ 200 RV measurements

RMS (m/s)

\[\frac{1}{\sqrt{\text{S/N}}} \]

\sim 7.5 \text{ m/s}
Current Status

- Ongoing survey of young, low mass stars in nearby moving groups, previously neglected by visible RV surveys
- Technique & first light paper in prep.
- Data pipeline refinement ongoing
- Systematic RV jumps indicate we need to obtain better empirical stellar templates
 - 3 hr CRIRES proposal submitted
 - This is a solvable problem
- Once resolved, intra-night measurements point to long-term precision of ~20-40 m/s, given sufficient S/N, corresponding to sensitivity to sub-Jovian mass planets
- With ~250nm spectral grasp, iSHELL will improve the RV precision obtainable with our gas cell by a factor of ~7, to ~3-5 m/s
- Gas Cells and FTIR spectra available to the community to use!
Limiting RV Noise Source: PSF stability
Non-Circular Core Fibers

Efficient Modal Scrambling
Low Focal Ratio Degradation
Visible \rightarrow NIR
Fiber Scrambler

- Negligible throughput loss with our scrambling technique
- Improves PSF centroid and FWHM stability by factors of >10
- Improves corresponding LSF stability without stabilizing the spectrograph
- Easier to model LSF and improves resulting RV precision
- Take to IRTF in ~fall 2011.
Summary

- There are a lot of interesting science cases enabled by a precision RV NIR spectrograph beyond looking for planets around M dwarfs.
- We can borrow a lot of the precision RV techniques developed in the visible, and adapt them to the NIR:
 - Gas cells, spectrograph stabilization, fiber scramblers, laser combs, etc.
- We are actively testing several of these techniques now.
- We have laid out an instrumentation roadmap for CSHELL → iSHELL → upgraded NIRSPEC that leverages existing hardware investments.