

DUNES observations of debris discs around nearby stars with exoplanets

J.P. Marshall on behalf of the DUNES consortium

Overview

- Introduction
 - Debris discs
 - DUst around NEarby Stars (DUNES)
- Summary of DUNES results
- Stars with both exoplanets and a debris disc
 - HIP7978
- A star with a debris disc from which we infer an exoplanet
 - HIP15371
- Summary

2nd May 2011

Debris discs

- Detected through infrared excess from dust emission.
- Lifetime of the grains is much shorter than the star, so must be continually replenished.
- Analogous to the Solar system's Edgeworth-Kuiper belt.
- Dust can tell us about (unseen) planetary companions in these systems.

Debris discs

- Most discs are unresolved, leading to degeneracy between parameters of dust emission models.
- Resolved emission can also be used as a probe for the influence of an unseen planet on the disc.

Images of Vega (top left), HD11511 (top right) and Beta Pic (bottom) illustrating the types of features in a disc that could be induced by the influence of an exoplanet.

Debris discs

NASA, ESA, P. Kalas and J. Graham (University of California, Berkeley) and M. Clampin (NASA/GSFC)

2nd May 2011

DUNES

- DUst around NEarby Stars:
 - Dependence of planet formation on stellar mass
 - Collisional and dynamical evolution of exo-EKBs
 - Presence of exo-EKB vs presence of planet(s)
 - Dust properties and sizes in exo-EKBs
- Searching for EKB analogue (L_{ir}/L_★ ~ 10⁻⁶ 10⁻⁷) debris discs around a volume limited sample of 133 nearby (< 20pc) sun-like (FGK) stars.
 - Spitzer debris discs < 25pc
 - Stars with known planets < 25pc
 - 106 common sources with DEBRIS
- Strategy: to detect the stellar photosphere at $100\mu m$ with SNR ≥ 5 .

DUNES

 So far we have observed 123 of the 133 stars in the sample. (27/04/2011)

•	Excess stars	35
•	Non-excess stars	88
•	New debris disc stars	15
•	Stars with exoplanets	19
•	Debris disc stars with planets	3
•	Resolved discs	16

DUNES

• So far we have observed 123 of the 133 stars in the sample. (27/04/2011)

•	Excess stars	35
•	Non-excess stars	88
•	New debris disc stars	15
•	Stars with exoplanets	19
•	Debris disc stars with planets	3
•	Resolved discs	16

Stars with exoplanets

- From the 19 exoplanet host stars in the survey, we have observed debris discs around 3.
- Previously, there has been little observational evidence that exoplanet systems are more likely to also host a debris disc.
- Due to the small sample size, the statistical significance of this result is dubious, however!

Herschel PACS 100 and 160µm observations of two debris disc stars.

HIP 7978

- HIP7978 (q¹ Eridani) is known to host a single giant exoplanet, well separated from the debris disc.
- Deconvolved images of the debris disc by Herschel/PACS have resolved a sharp inner edge to the debris disc.
- We infer the presence of another exoplanet preventing the inward motion of dust in the system.

Herschel PACS observations of HIP7978, Liseau et al., 2010.

J.P. Marshall, UAM

2nd May 2011

HIP 7978

- HIP7978 (q¹ Eridani) is known to host a single giant exoplanet, well separated from the debris disc.
- Deconvolved images of the debris disc by Herschel/PACS have resolved a sharp inner edge to the debris disc.
- We infer the presence of another exoplanet preventing the inward motion of dust in the system.

Herschel PACS observations of HIP7978, Liseau et al. ,2010

J.P. Marshall, UAM

2nd May 2011

HIP15371

- HIP15371 (ζ² Reticuli) hosts a cold, faint and asymmetric debris disc.
- The shape of the disc could be the result of the influence of a Jupiter mass exoplanet on an eccentric orbit outside the disc.

Dynamical simulation of an exoplanet around HIP15371, courtesy of V. Faramaz.

2nd May 2011

Summary

- We have detected resolved emission from 16 nearby debris disc systems, at flux levels equivalent to the Solar system's Edgeworth-Kuiper belt.
- Three of these stars already have been identified as exoplanet hosts through radial velocity searches.
- The structure of two of these discs imply the presence of an exoplanet shaping the disc.
- Resolving the emission from debris disc systems is a powerful tool to constrain the dust properties of these systems, and a probe for planetary mass companions in regions usually excluded from traditional search methods.

