DUNES observations of debris discs around nearby stars with exoplanets

J.P. Marshall
on behalf of the DUNES consortium
Overview

• Introduction
 • Debris discs
 • DUst around NEarby Stars (DUNES)
• Summary of DUNES results
• Stars with both exoplanets and a debris disc
 • HIP7978
• A star with a debris disc from which we infer an exoplanet
 • HIP15371
• Summary
Debris discs

- Detected through infrared excess from dust emission.
- Lifetime of the grains is much shorter than the star, so must be continually replenished.
- Analogous to the Solar system’s Edgeworth-Kuiper belt.
- Dust can tell us about (unseen) planetary companions in these systems.
Debris discs

- Most discs are unresolved, leading to degeneracy between parameters of dust emission models.
- Resolved emission can also be used as a probe for the influence of an unseen planet on the disc.

Images of Vega (top left), HD11511 (top right) and Beta Pic (bottom) illustrating the types of features in a disc that could be induced by the influence of an exoplanet.
Debris discs

Fomalhaut Debris Ring

Hubble Space Telescope • ACS HRC

NASA, ESA, P. Kalas and J. Graham (University of California, Berkeley) and M. Clampin (NASA/GSFC)

STScI-PRC05-10
DUNES

- DUST around NEarby Stars:
 - Dependence of planet formation on stellar mass
 - Collisional and dynamical evolution of exo-EKBs
 - Presence of exo-EKB vs presence of planet(s)
 - Dust properties and sizes in exo-EKBs

- Searching for EKB analogue ($L_{ir}/L_\star \sim 10^{-6} - 10^{-7}$) debris discs around a volume limited sample of 133 nearby (< 20pc) sun-like (FGK) stars.
 - Spitzer debris discs < 25pc
 - Stars with known planets < 25pc
 - 106 common sources with DEBRIS

- Strategy: to detect the stellar photosphere at 100µm with SNR ≥ 5.

2nd May 2011
J.P. Marshall, UAM
So far we have observed 123 of the 133 stars in the sample. (27/04/2011)

- Excess stars: 35
- Non-excess stars: 88
- New debris disc stars: 15
- Stars with exoplanets: 19
- Debris disc stars with planets: 3
- Resolved discs: 16
DUNES

- So far we have observed 123 of the 133 stars in the sample. (27/04/2011)

- Excess stars 35
- Non-excess stars 88
- New debris disc stars 15
- Stars with exoplanets 19
- Debris disc stars with planets 3
- Resolved discs 16
Stars with exoplanets

- From the 19 exoplanet host stars in the survey, we have observed debris discs around 3.

- Previously, there has been little observational evidence that exoplanet systems are more likely to also host a debris disc.

- Due to the small sample size, the statistical significance of this result is dubious, however!

Herschel PACS 100 and 160µm observations of two debris disc stars.
HIP 7978

- HIP7978 (q^1 Eridani) is known to host a single giant exoplanet, well separated from the debris disc.

- Deconvolved images of the debris disc by Herschel/PACS have resolved a sharp inner edge to the debris disc.

- We infer the presence of another exoplanet preventing the inward motion of dust in the system.

Herschel PACS observations of HIP7978, Liseau et al., 2010.
HIP 7978

- HIP7978 (α^1 Eridani) is known to host a single giant exoplanet, well separated from the debris disc.

- Deconvolved images of the debris disc by Herschel/PACS have resolved a sharp inner edge to the debris disc.

- We infer the presence of another exoplanet preventing the inward motion of dust in the system.

Herschel PACS observations of HIP7978, Liseau et al., 2010
HIP15371

- HIP15371 (ζ² Reticuli) hosts a cold, faint and asymmetric debris disc.

- The shape of the disc could be the result of the influence of a Jupiter mass exoplanet on an eccentric orbit outside the disc.

Dynamical simulation of an exoplanet around HIP15371, courtesy of V. Faramaz.
Summary

• We have detected resolved emission from 16 nearby debris disc systems, at flux levels equivalent to the Solar system’s Edgeworth-Kuiper belt.
• Three of these stars already have been identified as exoplanet hosts through radial velocity searches.
• The structure of two of these discs imply the presence of an exoplanet shaping the disc.
• Resolving the emission from debris disc systems is a powerful tool to constrain the dust properties of these systems, and a probe for planetary mass companions in regions usually excluded from traditional search methods.