Evolution & Compositions of Giant Exoplanets

Tristan Guillot Mathieu Havel Observatoire de la Côte d'Azur, Nice

All exoplanets: May 2011

Transiting exoplanets: May 2011

Transiting exoplanets: May 2011

- Principle
- The 'inflated planets' problem
 - Kinetic energy heating, Ohmic dissipation & statistical tests
- Inferring compositions
 - Mz values and the Mz,[Fe/H] correlation
- The young/fast rotating G dwarfs
 - CoRoT-2 and CoRoT-18
- A multi-planet transiting system
 - Kepler-9

• Principle

- The 'inflated planets' problem
 - Kinetic energy heating, Ohmic dissipation & statistical tests
- Inferring compositions
 - Mz values and the Mz,[Fe/H] correlation
- The young/fast rotating G dwarfs
 - CoRoT-2 and CoRoT-18
- A multi-planet transiting system
 - Kepler-9

Principle

Giant planets gradually contract & cool (Hubbard 1977)

Irradiated planets develop a deep radiative zone and contract more slowly (Guillot et al. 1996)

More heavy elements implies smaller planets (e.g. Guillot 2005- see however Baraffe et al. 2008, Spiegel et al. 2010, Burrows et al. 2011)

• Principle

• The 'inflated planets' problem

- Kinetic energy heating, Ohmic dissipation & statistical tests
- Inferring compositions
 - Mz values and the Mz,[Fe/H] correlation
- The young/fast rotating G dwarfs
 - CoRoT-2 and CoRoT-18
- A multi-planet transiting system
 - Kepler-9

The radius anomaly: description

HD209458b was shown to be anomalously large Bodenheimer et al. (2001) Guillot & Showman (2002) Baraffe et al. (2003)

The radius anomaly of an exoplanet is defined as the difference between the observed radius and the theoretical size of a solarcomposition planet of the same mass and age Guillot et al. (2006)

A large fraction of known transiting exoplanets have a positive radius anomaly Guillot et al. (2006), Burrows et al. (2007), Guillot (2008), Laughlin et al. (2011)

Binding energy: $E_B \sim GM^2/R \sim 10^{43}$ erg for HD209458b

Binding energy: $E_B \sim GM^2/R \sim 10^{43}$ erg for HD209458b

I. Slow the cooling

Binding energy: $E_B \sim GM^2/R \sim 10^{43}$ erg for HD209458b

Binding energy: $E_B \sim GM^2/R \sim 10^{43}$ erg for HD209458b

I. Slow the cooling

2. Transport irradiation energy deep

Stellar irradiation: L~3 x 10²⁹ erg/s The energy received in 1Ma is 10⁴³ erg 3. Tap from orbital energy reservoir

Orbital energy $E=GM_{star}M/2a\sim3 \times 10^{44}$ erg The spin energy for a 10h rotation is $Es\sim1/5$ MR² $\omega^2 \sim 10^{42}$ erg

Binding energy: $E_B \sim GM^2/R \sim 10^{43}$ erg for HD209458b

I. Slow the cooling

Increased interior opacities: Guillot (2005), Guillot et al. (2006)

Increased atmospheric opacities: Burrows et al. (2007), Guillot (2010), Burrows et al. (2011)

Semi-convection: Chabrier & Baraffe (2007)

Binding energy: $E_B \sim GM^2/R \sim 10^{43}$ erg for HD209458b

I. Slow the cooling

Increased interior opacities: Guillot (2005), Guillot et al. (2006)

Increased atmospheric opacities: Burrows et al. (2007), Guillot (2010), Burrows et al. (2011)

Semi-convection: Chabrier & Baraffe (2007) 2. Transport irradiation energy deep

"Weather noise" model: Guillot & Showman (2002)

Ohmic dissipation: Laine, Lin & Dong (2009), Batygin & Stevenson (2010) Perna, Menou & Rauscher (2010)

Thermal tides:

Arras & Socrates (2010) (but Gu & Ogilvie 2009; Goodman astroph)

Binding energy: $E_B \sim GM^2/R \sim 10^{43}$ erg for HD209458b

I. Slow the cooling

Increased interior opacities: Guillot (2005), Guillot et al. (2006)

Increased atmospheric opacities: Burrows et al. (2007), Guillot (2010), Burrows et al. (2011)

Semi-convection: Chabrier & Baraffe (2007) 2. Transport irradiation energy deep

"Weather noise" model: Guillot & Showman (2002)

Ohmic dissipation: Laine, Lin & Dong (2009), Batygin & Stevenson (2010) Perna, Menou & Rauscher (2010)

Thermal tides:

Arras & Socrates (2010) (but Gu & Ogilvie 2009; Goodman astroph) 3. Tap from orbital energy reservoir

Circularisation by tides: Bodenheimer et al. (2001) Gu et al. (2003), Jackson et al. (2008, 2009), Ibgui et al. (2009), Ibgui & Burrows (2010), Miller et al. (2009) Ibgui et al. (2010)

but:

Leconte et al. (2010) (see also Barker & Ogilvie 2009)

Binding energy: $E_B \sim GM^2/R \sim 10^{43}$ erg for HD209458b

I. Slow the cooling

Increased interior opacities: Guillot (2005), Guillot et al (2006)

Increased atmospheric opacities:

Burrows et al. (2007)

Semi-convection:

Chabrier & Baraffe (2007)

2. Transport irradiation energy deep

"Weather noise" model: Guillot & Showman (2002)

Ohmic dissipation: Laine, Lin & Dong (2009), Batygin & Stevenson (2010) Perna, Menou & Rauscher (2010)

Thermal tides:

Arras & Socrates (2010) (but Gu & Ogilvie 2009; Goodman astroph) 3. Tap from orbital energy reservoir

Circularisation by tides: Bodenheimer et al. (2001) Gu et al. (2003), Jackson et al. (2008, 2009), Ibgui et al. (2009), Ibgui & Burrows (2010), Miller et al. (2009)

but:

econte et al. (2010)

"Weather noise"

but: Burkert et al. (2005)?

"Weather noise"

Guillot & Showman (2002)

Showman & Guillot (2002)

"Weather noise"

transporting deep ~1% of the stellar flux is enough to explain the size of most transiting planets

See also:

Bodenheimer et al. (2001) (orbital energy) Guillot & Showman (2002)

Ohmic dissipation

 $\mathbb{P} = \int \int \int \frac{J^2}{\sigma(r)} dV.$

Currents generated in the hot, (partially) conducting interior and due to induction between the atmospheric circulation and the planetary magnetic field can dissipate $\sim 10^{23}$ to 10^{28} erg/s

see also

Perna, Menou & Rauscher (2010) Laine, Lin & Dong (2009)

Batygin & Stevenson (2010)

T_{eq} vs radius anomaly

Models from Guillot (2008)

T_{eq} vs radius anomaly

T_{eq} vs radius anomaly

T_{eq} vs radius anomaly^{*} weather noise (0.5% of incoming stellar flux)

Missing physics: Summary

	magnitud e	frequency	a dependen ce	[Fe/H] dependen ce	age depende nce	Refs
interior/ atmosphere opacities	\checkmark	\checkmark	~	yes	weak	Guillot et al. (2006), Burrows et al. (2007), Guillot(2008)
Semi-convection	\checkmark	?	X	yes	weak	Chabrier & Baraffe (2007)
K.E. model	\checkmark	\checkmark	\checkmark	no	no	Guillot & Showman (2002), Burkert et al. (2005), Guillot et al. (2006, 2008)
Ohmic dissipation	\checkmark	\checkmark	\checkmark	yes	no/yes	Laine et al. (2009), Batygin & Stevenson (2010)
Thermal tides	\checkmark	\checkmark	\checkmark	no	no	Arras & Socrates (2010), [but see Gu & Ogilvie (2009), Goodman (astroph)]
Obliquity tides	?	X	\checkmark	no	weak	Winn & Holman (2005), Levrard et al. (2006), Fabrycky et al. (2006)
Eccentricity tides	\checkmark	?	\checkmark	no	strong	Bodenheimer et al. (2001), Gu et al. (2003), Jackson et al. (2008a,b), Ibgui & Burrows (2009), Miller et al. (2009)

• Principle

• The 'inflated planets' problem

- Kinetic energy heating, Ohmic dissipation & statistical tests
- Inferring compositions
 - Mz values and the Mz, [Fe/H] correlation
- The young/fast rotating G dwarfs
 - CoRoT-2 and CoRoT-18
- A multi-planet transiting system
 - Kepler-9

[Fe/H] vs radius anomaly

updated from Guillot 2008 see also Guillot et al. 2006, Burrows et al. 2007

[Fe/H] vs radius anomaly

updated from Guillot 2008 see also Guillot et al. 2006, Burrows et al. 2007

(stellar) [Fe/H] vs. (planetary) Mz/Mtot

(Weather noise model)

updated from Guillot 2008

(stellar) [Fe/H] vs. (planetary) Mz

(Weather noise model)

see also Guillot et al. 2006, Burrows et al. 2007

(stellar) [Fe/H] vs. (planetary) Mz

Mordasini et al. (2009)

• Principle

• The 'inflated planets' problem

- Kinetic energy heating, Ohmic dissipation & statistical tests
- Inferring compositions
 - Mz values and the Mz,[Fe/H] correlation
- The young/fast rotating G dwarfs
 - CoRoT-2 and CoRoT-18
- A multi-planet transiting system
 - Kepler-9

Spin rates of stars with planets

Link to tides?

Bouchy et al. (submitted to A&A)

CoRoT-2b among its peers

updated from Guillot 2008

CoRoT-2a: evolution constraints

2 classes of solutions:
on the pre-main sequence
(30-40Ma)
on the main sequence (>IGa)

Guillot & Havel (2011)

CoRoT-2b: energy dissipation

CoRoT-2b: tides? a recent giant impact?

The measured size can be explained as a transient phenomenon

Guillot & Havel (2011) (see also Gillon et al. 2010)

CoRoT-18 1.02 1.01

Very similar to CoRoT-2: Active, solar-mass star, with high mass close-in planet (~3Mjup)

Hebrard et al. (in preparation)

CoRoT-18: HR tracks

Hebrard et al. (in preparation)

CoRoT-18

Second CoRoT symposium, 13-17 june 2011

Planets around young stars

- CoRoT-2b is so large that either:
 - It was formed 30 to 40Ma ago, and the planet's atmosphere contains additional opacity sources
 - It was raised to a high eccentricity less than 20 Ma ago and has now been almost circularized but is still hot from that period
 - It suffered a giant impact with a Saturn to Jupiter mass planet less than 20 Ma ago.
- CoRoT-18 age determinations are not consistent
 - Problem with ρ^* determination in variable stars?
 - Do we understand the physics of young stars?

- Principle
- The 'inflated planets' problem
 - Kinetic energy heating, Ohmic dissipation & statistical tests
- Inferring compositions
 - Mz values and the Mz, [Fe/H] correlation
- The young/fast rotating G dwarfs
 - CoRoT-2 and CoRoT-18
- A multi-planet transiting system
 - Kepler-9

Kepler-9

- First multi-planet transiting system
- Teff=5780K, [Fe/H]=0.12+/-0.04
- Stellar spin period: 16.7 days
- 2 Saturn mass planets + I super-Earth
 - 9b: M=80M⊕, P=19.2 days
 - 9c: M=55M⊕, P=38.9 days
 - 9d: M=?, R=1.6R⊕, P=1.6 days
- 9b and 9c are in 2:1 resonance
 - Strong TTVs

Holman et al. (2010), Torres et al. (2010)

Kepler-9: stellar mass & age

- Stellar evolution tracks using CESAM
 - Colors in the figure shows the observational constraints (Teff,) at I, 2 and 3σ, respectively
- 2-4 Ga preferred by gyrochronology (16.7 days spin period)

Kepler-9: planetary radii & age

- Stellar evolution tracks using CESAM
 - Colors in the figure shows the observational constraints (Teff,) at I, 2 and 3σ, respectively
- 2-4 Ga preferred by gyrochronology (16.7 days spin period)

Kepler-9: Mz vs. age in planets b & c

- Planetary evolution tracks using CEPAM
- Mz the mass of heavy elements is calculated by accounting for different physical hypotheses
 - with/without heat dissipation
 - different atmospheric models
- 2-4 Ga is preferred by gyrochronology

Havel et al. (2011)

Kepler-9: composition ratios vs. age

- By looking at the ratios of heavy elements in 9b and 9c we are able to obtain much better constraints
- Surprisingly, 9b and 9c have similar global Z values
- This is not expected by formation models
 - Since planet 9b has a larger Mz, it would be expected to accrete H-He (much) faster than 9c (lkoma et al. 2001, Hori & lkoma 2010)

Summary

• Evolution of giant planets understood, but not fine details.

- «Inflated planets» problem
 - Mechanism still uncertain but "weather noise" + ohmic dissipation appears promising
- Role of atmosphere?
- Statistical analyses of transiting exoplanets allow powerful tests of theories
 - Testing the source of the missing physics
 - Confirmation of the correlation between Mz and [Fe/H]
 - High Mz mass probably imply multiple (giant) impacts
- Young stars with transiting planets pose problems
 - CoRoT-2, CoRoT-18
 - Recent giant impacts? Different stellar physics?
- Multi-planetary transiting systems bring new information
 - Kepler-9 system: Two Saturn-mass planets with same global composition, in 2:1 resonance.