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Giant planets gradually 
contract & cool
 (Hubbard 1977)

Irradiated planets develop 
a deep radiative zone and 

contract more slowly 
(Guillot et al. 1996) 

More heavy elements 
implies smaller planets 

(e.g. Guillot 2005- see however 
Baraffe et al. 2008, Spiegel et al. 

2010, Burrows et al. 2011)

Planetary HR diagram

Mass-radius relation
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The radius anomaly: description

Radius anomaly

missing physics

heavy elements

HD209458b was shown to 
be anomalously large
Bodenheimer et al. (2001)
Guillot & Showman (2002)

Baraffe et al. (2003)

The radius anomaly of an 
exoplanet is defined as the 

difference between the 
observed radius and the 

theoretical size of a solar-
composition planet of the 

same mass and age
Guillot et al. (2006)

A large fraction of known 
transiting exoplanets have 
a positive radius anomaly

Guillot et al. (2006), Burrows et 
al. (2007), Guillot (2008), 

Laughlin et al. (2011)
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Binding energy:  EB~GM2/R ~1043 erg for HD209458b

1. Slow the cooling
2. Transport irradiation 
energy deep

Stellar irradiation: 
L~3 x 1029 erg/s
The energy received 
in 1Ma is 1043 erg

3. Tap from orbital energy 
reservoir

Orbital energy  

E=GMstarM/2a~3 x 1044 erg

The spin energy for a 10h 
rotation is 

Es~1/5 MR2ω2 ~ 1042 erg 
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Knutson et al. 2007

“Weather noise”

torques
dynamicalgravitational

torques

Orbit Atmosphere

Interior

Kinetic energy is generated

Penetrates to deep levels

Is dissipated there

stellar photons heat the 
atmosphere

but: Burkert et al. (2005) ?
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“Weather noise”

HD209458b

Baraffe et al. 2003

transporting deep ~1% of the 
stellar flux is enough to explain 
the size of most transiting 
planets

See also: 
Bodenheimer et al. (2001) (orbital energy)
Guillot & Showman (2002)



Ohmic dissipation

Currents generated in the hot, 
(partially) conducting interior 
and due to induction between 
the atmospheric circulation and 
the planetary magnetic field can 
dissipate ~1023 to 1028 erg/s

Batygin & Stevenson (2010)

see also
Perna, Menou & Rauscher (2010)
Laine, Lin & Dong (2009)



Teq vs radius anomaly

missing physics

heavy elements

Models from Guillot (2008)
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Teq vs radius anomaly

missing physics

Laughlin et al. (2011):    R ∝ Teq1.4±0.6

•~ok for ohmic dissipation. 
•Too strong for «pure kinetic energy deposition»? 



Teq vs radius anomaly*
weather noise (0.5% of incoming stellar flux)

missing physics

heavy elements



Missing physics: Summary

magnitud
e frequency

a 
dependen

ce

[Fe/H] 
dependen

ce

age 
depende

nce
Refs

interior/
atmosphere 

opacities

Semi-convection

K.E. model

Ohmic 
dissipation

Thermal tides

Obliquity tides

Eccentricity 
tides

√ √ ~ yes weak Guillot et al. (2006), Burrows et al. 
(2007), Guillot(2008)

√ ? X yes weak Chabrier & Baraffe (2007)

√ √ √ no no
Guillot & Showman (2002), Burkert 

et al. (2005), Guillot et al. (2006, 
2008)

√ √ √ yes no/yes Laine et al. (2009), Batygin & 
Stevenson (2010)

√ √ √ no no
Arras & Socrates (2010), 

[but see Gu & Ogilvie (2009), 
Goodman (astroph)]

? X √ no weak Winn & Holman (2005), Levrard et 
al. (2006), Fabrycky et al. (2006)

√ ? √ no strong
Bodenheimer et al. (2001), Gu et al. 
(2003), Jackson et al. (2008a,b), Ibgui 

& Burrows (2009), Miller et al. 
(2009)



• Principle

• The ‘inflated planets’ problem
• Kinetic energy heating, Ohmic dissipation & statistical tests

• Inferring compositions
• Mz values and the Mz,[Fe/H] correlation

• The young/fast rotating G dwarfs
• CoRoT-2 and CoRoT-18

• A multi-planet transiting system
• Kepler-9



[Fe/H] vs radius anomaly

missing physics

heavy elements

updated from Guillot 2008
see also Guillot et al. 2006, Burrows et al. 2007



[Fe/H] vs radius anomaly

missing physics

heavy elements

updated from Guillot 2008
see also Guillot et al. 2006, Burrows et al. 2007



(stellar) [Fe/H] vs. (planetary) Mz/Mtot
(Weather noise model)

updated from Guillot 2008



(stellar) [Fe/H] vs. (planetary) Mz
(Weather noise model)

updated from Guillot 2008
see also Guillot et al. 2006, Burrows et al. 2007

See N. Miller’s talk 
on Friday



(stellar) [Fe/H] vs. (planetary) Mz

Mordasini  et al. (2009)
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Spin rates of stars with planets
F dwarfsG dwarfsK dwarfs

HAT-P-2

CoRoT-11

CoRoT-2

TrES-1

OGLE-TR-L9

CoRoT-18



Link to tides?
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CoRoT-2a&b: observations

1.73 day
period planet

4.5 day
period star Planet: ~3 Mjup, ~1.5 Rjup

Rossiter: l=7.2° +/- 4.5° Secondary transit: e=0.03 +/- 0.03

Alonso et al. 2008

Bouchy et al. 2008 Alonso et al. 2009



CoRoT-2b among its peers

standard 1% K.E. model

updated from Guillot 2008

CoRoT-2b

CoRoT-2b



CoRoT-2a: evolution 
constraints

2 classes of solutions:
•on the pre-main sequence 
(30-40Ma)
•on the main sequence (>1Ga) 

Guillot & Havel (2011)



CoRoT-2b: energy dissipation
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CoRoT-2b: tides?
a recent giant impact?
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The measured size can be 
explained as a transient 

phenomenon

Guillot & Havel (2011)
(see also Gillon et al. 2010)



CoRoT-18

1.90 day
period planet 5.4 day

period star

Hebrard et al. (in preparation)

Very similar to 
CoRoT-2:

Active, solar-mass 
star, with high mass 

close-in planet 
(~3Mjup)



CoRoT-18: HR tracks

CoRoT-2

CoRoT-18

Hebrard et al. (in preparation)



CoRoT-18
Age range from 

gyrochronology & Li 
abundance

Ages & Masses from 
stellar evolution tracks 

matching Teff,ρ*

Hebrard et al. (in preparation)

Second CoRoT symposium, 13-17 june 2011



Planets around young stars

• CoRoT-2b is so large that either:
• It was formed 30 to 40Ma ago, and the planet’s atmosphere 

contains additional opacity sources

• It was raised to a high eccentricity less than 20 Ma ago and 
has now been almost circularized but is still hot from that 
period

• It suffered a giant impact with a Saturn to Jupiter mass 
planet less than 20 Ma ago. 

• CoRoT-18 age determinations are not consistent

• Problem with ρ* determination in variable stars?

• Do we understand the physics of young stars? 
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Kepler-9

• First multi-planet transiting system

• Teff=5780K, [Fe/H]=0.12+/-0.04

• Stellar spin period: 16.7 days

• 2 Saturn mass planets + 1 super-Earth

• 9b: M=80M⊕, P=19.2 days

• 9c: M=55M⊕, P=38.9 days

• 9d: M=?, R=1.6R⊕, P=1.6 days

• 9b and 9c are in 2:1 resonance

• Strong TTVs

Holman et al. (2010), Torres et al. (2010)



Kepler-9: stellar mass & age

• Stellar evolution tracks 
using CESAM

• Colors in the figure 
shows the 
observational 
constraints (Teff,) at 
1, 2 and 3σ, 
respectively

• 2-4 Ga preferred by 
gyrochronology (16.7 
days spin period)

Havel et al. (2011)



Kepler-9: planetary radii & age

• Stellar evolution tracks 
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• Colors in the figure 
shows the 
observational 
constraints (Teff,) at 
1, 2 and 3σ, 
respectively

• 2-4 Ga preferred by 
gyrochronology (16.7 
days spin period)

Havel et al. (2011)



Kepler-9: Mz vs. age in planets b & c

• Planetary evolution tracks 
using CEPAM

• Mz the mass of heavy 
elements is calculated by 
accounting for different 
physical hypotheses

• with/without heat 
dissipation

• different atmospheric 
models

• 2-4 Ga is preferred by 
gyrochronology

Havel et al. (2011)



Kepler-9: composition ratios vs. age

• By looking at the ratios of 
heavy elements in 9b and 
9c we are able to obtain 
much better constraints 

• Surprisingly, 9b and 9c have 
similar global Z values

• This is not expected by 
formation models

• Since planet 9b has a 
larger Mz, it would be 
expected to accrete H-
He (much) faster than 
9c (Ikoma et al. 2001, 
Hori & Ikoma 2010)

Havel et al. (2011)



Kepler-9: formation of the system:
a possible scenario?

Crida et al. (in preparation)
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Kepler-9: formation of the system:
a possible scenario?

9b forms first
& grows

9c appears; gap 
suppresses 

accretion of gas 
onto 9b

9b and 9c migrate 
inwards, in 2:1 

resonance

9d forms inside 
inner disk Crida et al. (in preparation)



Summary

• Evolution of giant planets understood, but not fine details. 
• «Inflated planets» problem

• Mechanism still uncertain but “weather noise” + ohmic dissipation appears 
promising 

• Role of atmosphere?

• Statistical analyses of transiting exoplanets allow powerful 
tests of theories
• Testing the source of the missing physics

• Confirmation of the correlation between Mz and [Fe/H]

• High Mz mass probably imply multiple (giant) impacts

• Young stars with transiting planets pose problems
• CoRoT-2, CoRoT-18

• Recent giant impacts? Different stellar physics? 

• Multi-planetary transiting systems bring new information 
• Kepler-9 system: Two Saturn-mass planets with same global composition, in 

2:1 resonance. 


