Transit and Eclipse Exoplanet Spectroscopy with JWST

Strange New Worlds Meeting Tom Greene May 3, 2011

Presentation Scope

- Exoplanet Time Domain Spectroscopy
- Outstanding Issues
- How Can JWST Help?
- Optimum Targets
- Planet Models
- Simulated Spectra and Potential Science
- Takeaways

Exoplanet Spectroscopy Status

JWST transit / eclipse spectra

Exoplanet Spectroscopy: The Ground

• The ground is trying. Enough aperture but control of systematic noise is difficult.

Broadband Transmission Spectrum of GJ 1214b

JWST transit / eclipse spectra

Some Outstanding Issues

- Are observed strengths of spectral features due to abundances or temperature profiles?
 - Distinguish temperatures, T profiles, compositions
 - Are Ice giants overabundant in carbon like Neptune?
- How is energy absorbed and transported in highly irradiated planets?
 - Measure & determine causes of temperature inversions
 - Study transport via day / night side differences
- Is there non-equilibrium chemistry at work?
 - Hydrocarbons like C_2H_2 (acetylene), C_2H_6 (ethane) indicate photochemical production
- What is the composition of mini-Neptune atmospheres?
- Can we detect any features in Super-Earth atmospheres?

Unidentified features in high insolation

- Excess Spitzer IRAC Band 3 emission seen in exoplanets with hot stratospheres / high altitude inversions like HD 209458
- Common to many planets, most highly insolated

JWST in a nutshell

6.5-m primary mirror; 18 segments.

T~40K, bkg. limited

- λ <1 28 μm
 - zodi-limited to $10\mu m$
- Instruments:
 - NIRCam 1 5 μ m
 - NIRSpec 1 5 um
 - MIRI 5 28 um
- (cam + spec)
 - FGS w/TF 1 5 um
- 201X launch
 - Arianne V to L2
 - 5 yr req life
 - 10 yr goal
 - No cryogens

Focal Plane Layout

131 nm RMS Wavefront Error

- Instruments view different parts of JWST focal plane
- Little parallel operation currently planned

How Can JWST Help?

- JWST has 6.5 m aperture vs. 2.4 m for HST and 0.85 m for Spitzer
 - Photon-noise limited SNR goes as aperture size, so JWST should be capable of SNR ~ 3 8 times present values
- JWST has great spectroscopic capabilities, particularly:
 - $\lambda = 1 5 \mu m$, R ~ 100 mode with NIRSpec prism
 - $-\lambda = 5 12 + \mu m$, R ~ 70 mode with MIRI LRS prisms (slitless)
- JWST is being designed and will be operated to maximize exoplanet spectroscopy SNR
 - Wide NIRSpec slit (1400 mas) and slitless mid-IR spectroscopy
 - Testing spectrophotometric precision and simulating operations
 - Large NIRSpec pixels may reduce precision (see P. Deroo poster); mitigation possible?

JWST Observational Constraints

- JWST instantaneous field of regard is limited
 - Sun angles between 85 and 135 degrees (35% of sky)
 - Two 50-day visibility windows per year near ecliptic
- JWST is optimized for long exposures of faint objects but subarrays do provide reasonable bright limits:
 - K ~ 5 mag for R=1700 NIRCam grism (2.4 5 μ m)
 - K ~ 7 mag for NIRSpec R ~ 33 315 prism (0.7 5 μ m)
 - Low overhead for long sequence of identical integrations if not too bright
- Ground bright limits are similar for R ~ 20,000 Keck NIRSpec & IRTF CSHELL / iSHELL
 - Narrow-band imaging could have similar limits if subarrays used

What are the optimum JWST targets?

- Ideally we need planets transiting / eclipsing IR bright nearby but small stars
 - Star SNR ~ sqrt(Signal) and transit depth ~ $(R_{pl} / R^*)^2$
 - M stars are ideal if stable
 - Kepler planets are too faint / distant for spectroscopy
- Planets with large atmospheric scale heights kT/(µg) will have relatively high SNR spectra
 - Gas giants, ice giants, mini-Neptunes will be good
- Impossible to detect atmospheric features in true Earth / Sun analog
- We need an all-sky transit survey mission to find good planets: ELEKTRA (or TESS) Explorer

Planet Models (J. Fortney & Collaborators)

- "Hot Jupiters", "Neptunes", "mini-Neptunes"
- Absorption and Emission models
- Variations for re-radiation geometry (2 pi / 4 pi), abundances, chemistry

Planet	Star SpT	V* (mag)	R* (Rsun)	R_pl (Rj)	t_trans (m)	t_ecl(m)
HD 189733b	K1.5	7.7	0.79	1.15	110	110
HD 209458b	G0V	7.7	1.15	1.38	144	144
HD8606b	G5	8.9	0.98	0.92	728	101
TrES-3	G	12.4	0.81	1.31	78	78
WASP-12b	G0V	11.7	1.57	1.79	162	162
WASP-17b	F6	11.6	1.38	1.74	262	262
WASP-18b	F9	9.3	1.23	1.17	135	135
GJ 436b	M2.5V	10.7	0.46	0.37	60	60
GJ1214b	M4.5V	14.7	0.21	0.24	50	50

JWST Simulations

- Semi-realistic model of telescope and instrument wavelength-dependent resolution and throughput
- Photon noise and systematic noise added
- Systematic noise is difficult to predict
 - May have large wavelength dependencies (See P. Deroo poster)
 - Currently assumed to be 50 ppm (max SNR = 20,000)
- Compare simulations of model variants to determine what science issues can be addressed with JWST data

HD 189733b Gas Giant

- Only 1 transit (top) or eclipse (bottom) plus time on star for each (1 NIRSPec + 1 MIRI)
- Multiple features of several molecules separate compositions, temperature, and distributions

GJ 436b (warm Neptune) transmission spectra simulations

• Simulated single transit model absorption spectra distinguish between equilibrium (black, blue, red) or non-equilibrium chemistries where H2O and CH4 are absent in favor of higher order hydrocarbons HCN, C2H2, and other molecules (purple, cyan and green curves). See Shabram et al. (2011).

MIRI detection of CO₂ in Super-Earths?

- JWST MIRI filters (red boxes, left) can be used to detect deep CO2 absorption in Super-Earth atmospheres in emission observations (Miller-Ricci 2009 model, left)
- Modelling shows that modest S/N detections possible on super-Earth planets around M stars (Deming et al. 2009).

Some Takeaways

- Expect exquisite JWST spectra of gas giants
 - Determine abundances, temperature profiles, and energy transport in hot Jupiters with little degeneracy using transit and eclipse spectra over 0.8 – 10+ microns.
- Mid-IR spectra can identify unknown emission in Spitzer IRAC 5.8 μm band of planets with suspected hot stratospheres
- Easily constrain compositions of mini-Neptunes like GJ 1214b (down to 2 R_E and smaller)
- Possibly detect CO₂ absorption in Super-Earths
- We need an all-sky transit survey mission to find good planets: ELEKTRA (or TESS) Explorer