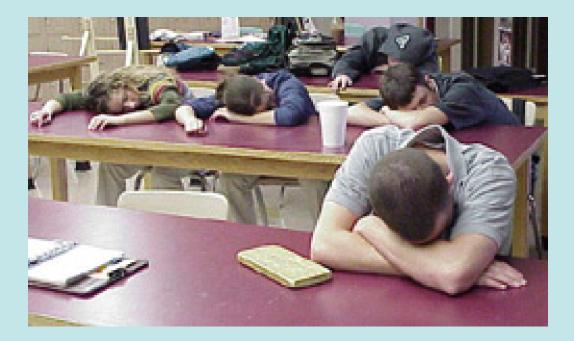
HST/FGS Astrometry of Nearby Stars

Exoplanet Masses and Exoplanetary System Architecture

Fritz Benedict & Barbara McArthur McDonald Observatory University of Texas Rory Barnes University of Washington

Astrometry of Exoplanet Host Stars

•HST/FGS Astrometry (but RV essential!)


 Exoplanetary Masses and System Architecture for Nearby Systems

 v And
 HD 128311
 HD 33636

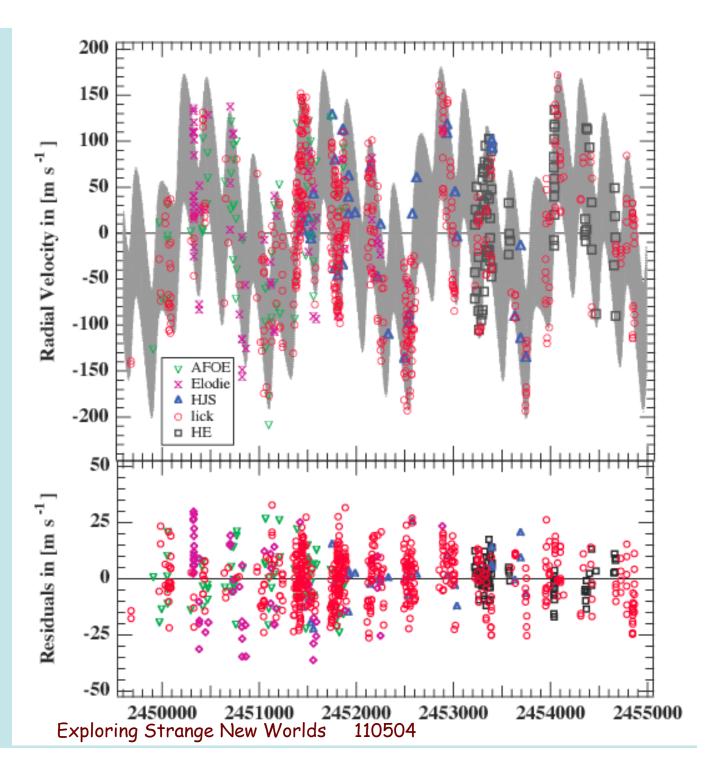
 Future of HST Astrometry

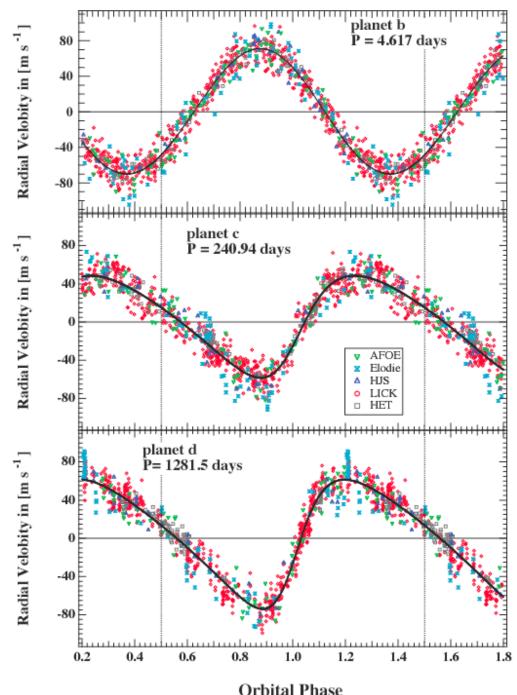
 More architectures
 M star masses
 Things Gaia can't do

Typical response to the word 'astrometry'

But stay awake - there is some RV stuff, too.

The queue-scheduled Hobby Eberly Telescope gives us high cadence and lots of epochs, which we desperately need because we don't get much coverage with HST.




110504^A sense of scale: A man stands next to the HET

A recent example of architecture determination

McArthur+, ApJ, 715, 1203

v Andromeda, a star a little hotter, a little more massive, and a little richer in heavy elements than the Sun

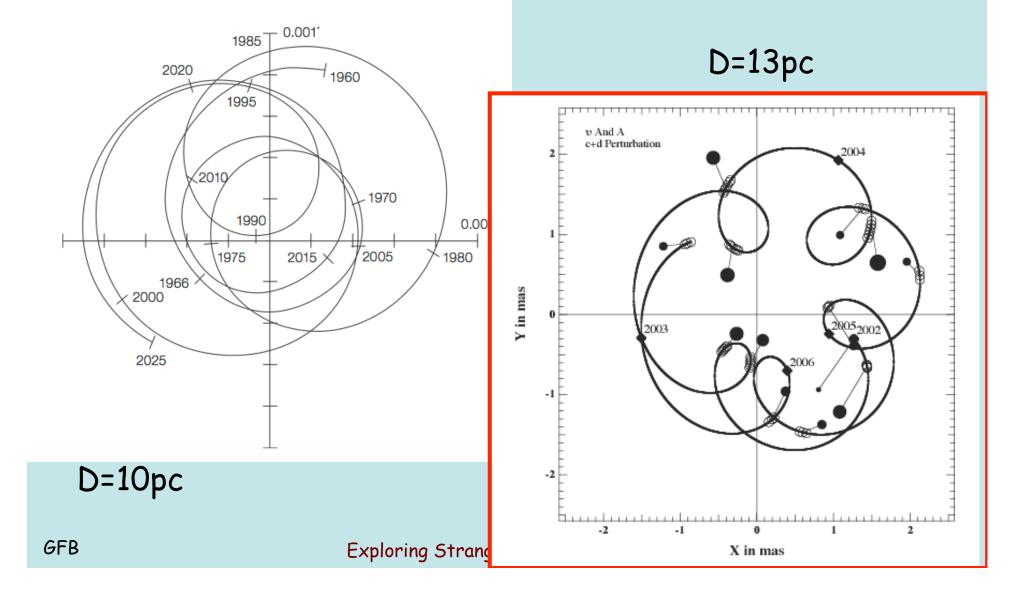
RV gives us K, RV amplitude P, period ϵ , eccentricity ω , periastron \angle T₀, time of ω

(long-term trend due to component e removed)

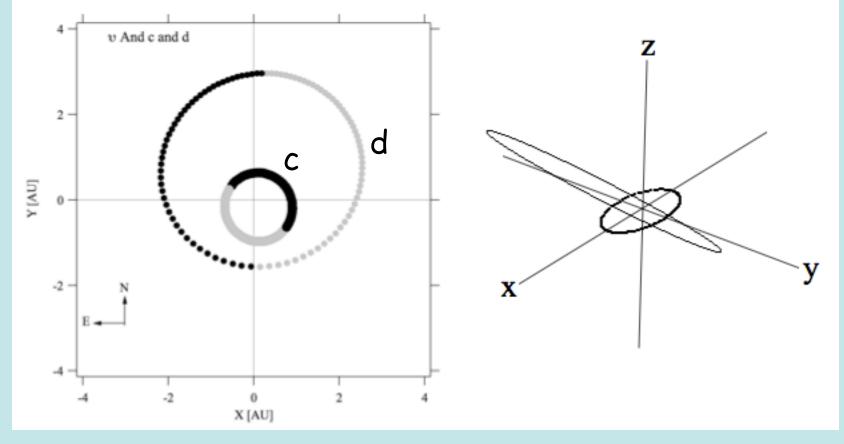
110504

GFB

Astrometry gives us Ω , line of nodes i, inclination α , perturbation size π , parallax μ , proper motion


(Pourbaix & Jorissen 2000)

 $\frac{\alpha \sin i}{\pi_{\rm abs}} = \frac{PK(1-e^2)^{1/2}}{2\pi \times 4.7405},$


And the true mass, if you know the host star mass

\$82E5937 1997:02:19 07:06:57

The Architecture of the υ And System (Analysis by Barbara McArthur)

The Architecture of the v And System (Analysis by Barbara McArthur)

Two suprises: $M_c = 14M_{Jup}$ $M_d = 10M_{Jup}$ (mass magnitude switched from Msini) $\phi = 35^{\circ}$ (mutual inclination)GFBExploring Strange New Worlds 110504

υ And, the Movie

http://mcdonaldobservatory.org/news/releases/2010/0524-video.html

4.5 y span of data to characterize P_c=0.66y, P_d=3.5y

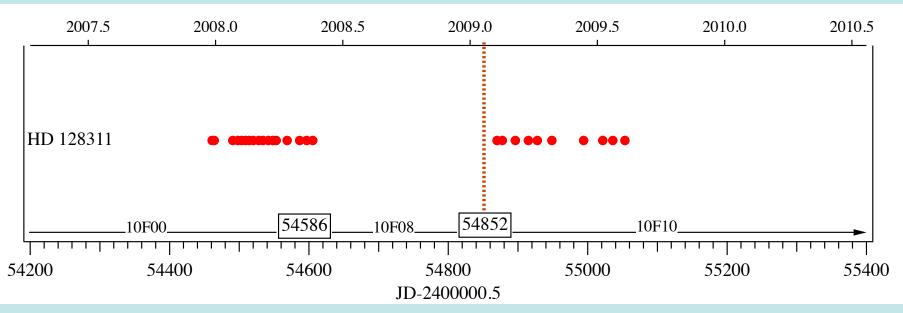
Why this mutual inclination? Planet-planet scattering? (promiscuous planet formation) Migration? (component b = Hot Jupiter) M dwarf companion? (sep~9kAU, ϵ ?)

HD 128311 b, c Perturbation Orbits 27 astrometric epochs in two clumps spanning only 1.6 years

 $P_b = 1.23y, \alpha = 0.11 \text{ mas}$ $P_c = 2.52y, \alpha = 0.38 \text{ mas}$ (α predicted), D=16.6pc

12.6y RV Lick + HET

HD 128311 b, c, d(?) RV



GFB

HD 128311 is an Active Star

- Activity introduces noise in RV signals
- HET RV preened using Bisector Analysis
- The signal of RV component d remains after preening
- Rules out activity/spots/rotation as generator of RV component d signal (K_d =13m s⁻¹)
- Preening results in significant improvement in HET RV residuals (dropped rms by 5 m s⁻¹)
- Dynamical modeling of our new RV orbital elements suggest that b and c components are not in mean motion resonance
- Paper (McArthur+ 2011) in preparation

Why HD 128311 is 'difficult'

Peculiar temporal distribution of astrometric observational epochs due to HST two gyro guiding constraints

Phase coverage of component c orbit not optimal

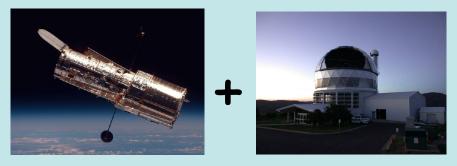
We don't yet 'see' component b, so no measure of mutual inclination

Exoplanet Masses with HST Astrometry

HST/FGS Astrometric Results												
Companion	M ∗ (M₀)	[Fe/H]	Sp.T.	d(pc)	ecc	M (M _{Jup})	lpha (mas)	inc(°)	P(d)			
GJ 876 b	0.32	-0.12	M4 V	4.7	0.1	1.9±0.5	0.25	84±6	61			
55 Cnc d	1.21	0.32	<i>G</i> 8V	12.5	0.33	4.9±1.1	1.9	53±7	4517			
ε Eri b	0.83	-0.03	K2 V	3.2	0.7	1.6±0.2	1.9	30±4	2502			
υ And d	1.31	0.1	F8V	13.6	0.32	10±2	1.4	24±1	1282			
HD 128311 c	0.79	0.08	KOV	16.6	0.29	4.2±1	0.6	50±10	911			
υ And c	1.31	0.1	F8V	13.6	0.25	14±3	0.6	8±1	241			
HD 136118 b	1.25	-0.05	F8V	51.7	0.35	42±15	1.5	163±3	1191			
HD 38529 b	1.48	0.27	G4IV	40	0.35	17.8±2	0.9	57±14	2139			

HD 128311 b inclination (mass) likely out of reach, unless we get more HST data

HD 33636

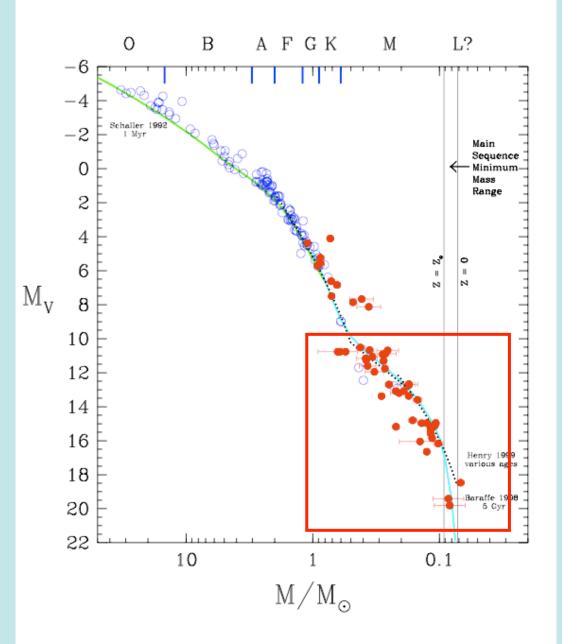

Additional HST/FGS data secured in November 2008, extending the time baseline from 1.2 y to 3.26 y. $P_b=5.8y$.

Proper motion and orbit remain severely entangled. Even with high-precision measurements, for this object it is difficult to establish an orbit with only fractional phase coverage.

HD 33636 b now more likely a brown dwarf, not an M dwarf, agreeing with Reffert & Quirrenbach (2011) Hipparcos result (but, again, only partial orbit).

More data are required, and have been requested (a fraction of a Cycle 19 HST proposal).

The Near-term Future

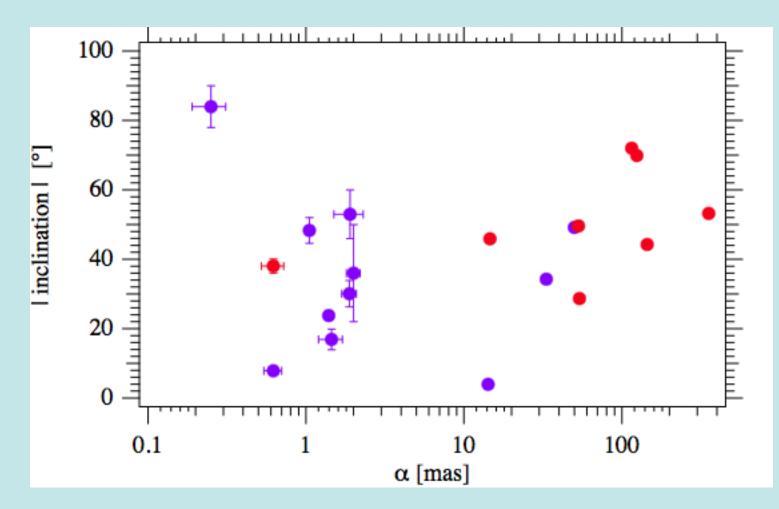


Mass Targets											
Companion	M ∗ (M _☉)	Sp.T.	d(pc)	ecc	Msini (M _{Jup})	αsini (mas)	P(d)				
HD 47536 b	1.1	K1 III	12.1	0.2	7	0.8	712				
HD 168443 c	1.05	G6 IV	37.9	0.2	17.4	1.3	1739				
Coplanarity Targets											
HD 202206 b	0.90	<i>G</i> 6 V	46.3	0.44	17.4	0.5	256				
HD 202206 c	0.90	<i>G</i> 6 V	46.3	0.27	2.4	0.2	1383				
μ Ara b	1.15	G3 IV	15.3	0.31	1.7	0.3	630				
μ Ara c	1.15	G3 IV	15.3	0.57	3.1	0.5	2490				
γ Cep Ab	1.18	K1IV+M4V	13.7	0.11	1.4	0.8	2207				

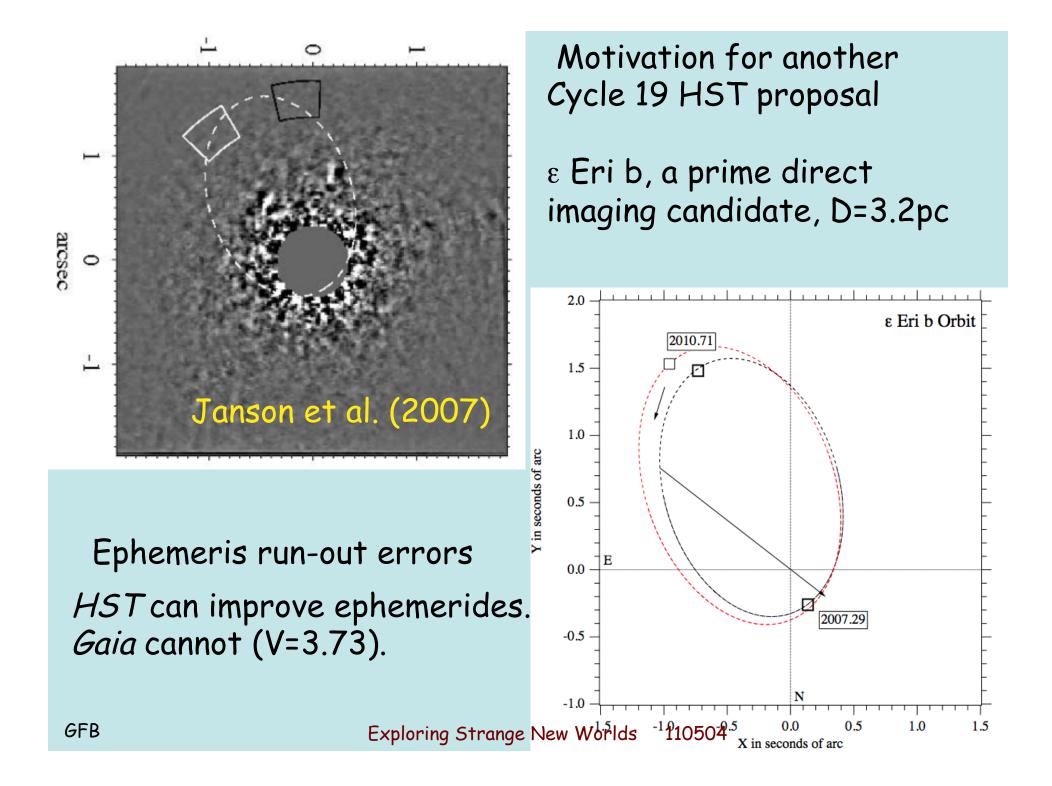
Exoplanet mass accuracy depends on stellar mass accuracy.

M star masses, not well characterized...

> M star masses "Yesterday"


M star masses better "tomorrow"

Preliminary and incomplete


HST/FGS astrometry of and masses for M star binary components,

Henry et al. 2011, in preparation

HST/FGS astrometry to date has produced 19 inclinations, some published (most exoplanets), some not published (most M dwarf binaries)

Exploring Strange New Worlds 110504

Conclusions

- Architecture for nearby systems is difficult but not impossible to establish. As much orbital phase coverage as possible; valuable.
- HST will shortly contribute to improved M star mass accuracy.
- Gaia will blow the lid off this field, but will not contribute to our knowledge of components of the nearby (bright) systems.