Secondary Eclipse Photometry of WASP-3b and WASP-4b with Spitzer

Ingrid M. Beerer (UC Berkeley), Heather A. Knutson (UC Berkeley, Miller Research Fellow), Adam Burrows (Princeton), Jonathan J. Fortney (UC Santa Cruz), Eric Agol (University of Washington), David Charbonneau (Harvard CfA), Nicolas B. Cowan (University of Washington), Drake Deming (Goddard), Jean-Michel Desert (Harvard CfA), Jonathan Langton (Principia College), Gregory Laughlin (UC Santa Cruz), Nikole K. Lewis (University of Arizona), Adam P. Showman (University of Arizona)

Overview

We present photometry of the giant extrasolar planet WASP-3b at 3.6, 4.5, and 8.0 µm and the planet WASP-4b at 3.6 and 4.5 µm taken with the Infrared Array Camera on board the Spitzer Space Telescope. We find secondary eclipse depths for WASP-3b that are well fit by model emission spectra exhibiting a temperature inversion in the upper atmosphere. The eclipse depths for WASP-4b are well fit by model emission spectra with water and other molecules in absorption, similar to those used for TrES-3 and HD 189733b. Depending on our choice of model, these results indicate that this planet has either a weak dayside temperature inversion or no inversion at all. We also find no evidence for an offset in the timing of either secondary eclipse and place a 2σ upper limit on |cos ω| for both planets.

Eclipse Depths and Times

Table 1 - Eclipse depths and offset from time of predicted center of eclipse. Predicted center of eclipse times for WASP-3b and WASP-4b are derived from the ephemeris in Winn et al. (2009) and Gibson et al. (2008), respectively.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Wavelength (µm)</th>
<th>Depth</th>
<th>Eclipse Offset (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WASP-3b</td>
<td>3.6</td>
<td>0.203% ± 0.032%</td>
<td>1.4 ± 2.9</td>
</tr>
<tr>
<td>WASP-3b</td>
<td>4.5</td>
<td>0.278% ± 0.018%</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td>WASP-3b</td>
<td>8.0</td>
<td>0.269% ± 0.048%</td>
<td>4.4 ± 2.4</td>
</tr>
<tr>
<td>WASP-4b</td>
<td>3.6</td>
<td>0.310% ± 0.031%</td>
<td>0.5 ± 1.3</td>
</tr>
<tr>
<td>WASP-4b</td>
<td>4.5</td>
<td>0.345% ± 0.067%</td>
<td>0.1 ± 1.9</td>
</tr>
</tbody>
</table>

Atmosphere Models: WASP-3b

Fig. 3 (left) - Dayside planet/star flux ratio vs. wavelength for two model atmospheres with the band-averaged flux ratios for each model superposed (squares). The measured contrast ratios are overplotted (black circles).

The magenta model in Figure 3 is derived from one-dimensional, plane-parallel atmosphere codes following Fortney et al. (2008). This best-fit Fortney et al. model for WASP-3b contains TiO in equilibrium abundance and has dayside only energy redistribution. The best-fit Burrows et al. model for WASP-3b (blue) has a high concentration of an unknown stratospheric absorber with κ = 0.2 cm²/g and relatively efficient dayside to nightside circulation with dimensionless redistribution parameter, Pₙ = 0.3. The dayside pressure-temperature profiles for these two models displayed in Figure 4 exhibit a strong temperature inversion in the upper atmosphere.

Atmosphere Models: WASP-4b

Fig. 5 (left) - Dayside planet/star flux ratio vs. wavelength for two model atmospheres with the band-averaged flux ratios for each model superposed (squares). The measured contrast ratios are overplotted (black circles).

The best-fit Fortney et al. model for WASP-4b (green) contains no TiO (resulting in no inversion in the P-T profile in Figure 6) and geometric redistribution factor fₙ=0.60, resulting in a very hot dayside. The Burrows et al. model (purple) contains a small amount of stratospheric absorber with κₙ = 0.03 cm²/g and relatively efficient day-night circulation with Pₙ = 0.3. The pressure-temperature profile in Figure 6 shows that this best-fit Burrows et al. model exhibits a modest temperature inversion for pressures below 0.01 bars, much weaker than the archetype inverted atmosphere HD 209458b. The absence of a strong inversion might be explained by the modestly enhanced activity level of WASP-40b’s G7V host star, which could increase the amount of UV flux received by the planet, therefore reducing the abundance of the unknown stratospheric absorber in the planetary atmosphere as suggested in Knutson et al (2010).

Fig. 4 (right) - Dayside pressure-temperature profiles for the two model atmospheres. Dayside pressure-temperature profiles for these two models displayed in Figure 4 exhibit a strong temperature inversion in the upper atmosphere.